Using contact networks, administrative, and linked genomic data to understand tuberculosis transmission in BC
Tuberculosis (TB) is still a problem in British Columbia, with approximately 250 cases diagnosed each year. In order to meet the WHO’s goal of achieving TB pre-elimination by 2030, TB rates in BC need to decline at a faster rate, and a change in how we manage TB prevention and care in the province is needed. Fortunately, all TB-related laboratory, epidemiology, clinical, and public health activities are centralized at the BC Centre for Disease Control (BCCDC).
Leveraging eye-tracking data to improve reliable detection of Alzheimer’s Disease and related patient’s states
Reliable detection of disease in the early stages of Alzheimer’s Disease (AD) continues to be a challenge. This project led by Drs. Conati and Field aims to investigate the value of eye-tracking data as one of the sources of information to build machine learning detectors of AD. In addition, the team will investigate eye-tracking based detectors of AD-related states such confusion and distress during naturally occurring tasks.
Knowledge Graphs – Mining, Cleaning and Maintenance
Extraction of knowledge from information sources ranging from unstructured and semi-structured, to structured has gained significant interest both in academia and in the industry. This is fueled by applications such as question answering and computational fact checking. Knowledge graphs (KG) have lately emerged as a de facto standard for knowledge representation, whereby knowledge is expressed as a collection of “facts", represented in the form of (subject, predicate, object) triples where subject and object are entities and predicate is a relation between those entities.
Computer vision and machine learning techniques for video and facial understanding
In this project, Drs. Sigal and Schmidt are pursuing a number of research goals at the intersection of computer vision and machine learning. In part one, the team will advance automatic video summarization by exploring novel richer joint video-linguistic and graph-structured representations to facilitate video retrieval, summarization and--potentially--action recognition tasks.
Leveraging more accurate and flexible discourse structures in question-answering and summarization
Existing systems for critical NLP tasks like question-answering and summarization are still unable to accurately uncover and effectively leverage the discourse structure of text; i.e., how clauses and sentences are related to each other in a document. This is a serious limitation in that relationships between clauses and sentences carries important information, which allows the text to express a meaning as a whole, beyond the sum of its parts. The goal of discourse parsing is to automatically determine the coherence structure of text.
Large-scale Bayesian modelling of drug resistance and evolution in human cancers at single-cell resolution
Recent advances in next generation sequencing (NGS) technologies have led to the ability to measure gene expression and DNA mutations across thousands of cells in cancer tumors at the single-cell level. This allows us to quantify the effect of chemotherapeutic drugs on the way tumors mutate and answer questions about why particular groups of cells (known as clones) evade treatment and cause relapse. However, the vast quantities of data produced by such measurements combined with the low signal-to-noise ratio makes analysis and interpretation particularly difficult.
Automated diagnosis and prognostication of severity in COPD via deep learning frameworks using multi-modal data
Chronic Obstructive Pulmonary Disease (COPD) is a progressive, debilitating, chronic respiratory disease. It is currently the 4th leading cause of mortality and is responsible for 100,000 hospitalizations and 10,000 deaths annually in Canada, and 3 million deaths worldwide. Although our understanding of COPD pathogenesis has improved substantially over the past 20 years, there is a notable lack of treatments that can modify disease progression and reduce mortality. Furthermore, current methods to clinically diagnose COPD are non-specific and insufficient to advance knowledge.