Technology pipeline for the development of Machine-Learned Interatomic Potentials

A closeup of a hand using a dropper to drop liquid into a test tube. There are chemical drawings overlayed on the image. In the upper right corner, a headshot of Dr. Joerg Gsponer.

Awarded To

Post Doc Fellows

With the postdoctoral funding award from the Data Science Institute, Dr. Joerg Gsponer (Biochemistry and Molecular Biology) aims to establish and benchmark a technology pipeline for the development of Machine-Learned Interatomic Potentials (MLIPs) for Intrinsically Disordered Proteins (IDPs), thereby establishing a pathway to close a huge methodology gap that currently prevents significant progress in many areas of biochemistry and biomedicine.

Summary: Cellular communication and decision making relies primarily on proteins; their ability to catalyze chemical reactions and interact with each other in a specific and tunable manner. Although immense technological innovations in the fields of biophysics and computer science over the last six decades have provided unprecedented insight into protein structure and function, there still remains the under explored and under characterized “dark matter” of the protein universe: Intrinsically disordered proteins (IDPs) are central integrators and decision makers in cellular systems because their lack of a single structure lets them act like Swiss army knives with multiple functional “tools” that can be deployed as most appropriate for cellular challenges. However, the fact that they are dynamic, interconverting structural ensembles has hampered their characterization. Even molecular dynamics simulations fail to accurately capture IDP ensembles because the available empirical force fields have been developed and optimized to reproduce dynamics of folded proteins. The recent combination of machine-learning and data science technology has led to the development of machine-learned interatomic potentials (MLIPs). MLIPs provide a realistic route to revolutionize the field of IDP characterization by enabling accurate, large-scale atomistic simulations and modeling. This project aims to establish and benchmark a technology pipeline for the development of MLIPs for IDPs, thereby establishing a pathway to close a huge methodology gap that currently prevents significant progress in many areas of biochemistry and biomedicine.

Background: Research effects across the biomedical field try to elucidate how IDPs regulate cellular processes, how their vital contributions to cell physiology are affected in human disease, and how we can exploit IDPs as drug targets. However, the fact that their contributions to cell function rely on highly dynamic, often only transient, interactions with themselves or other molecules, which are nonetheless very specific, makes their characterization extremely challenging. A prime example for this challenge are IDPs that drive the assembly of cellular condensates via the process of phase separation. In these biomolecular condensates, IDPs contribute to a mesh of transient interactions that define the condensates’ visco-elastic properties and, thereby, their functional impact in a cell. Indeed, mutations in certain IDPs can lead to a “solidification” of IDP interactions in the condensates, resulting in a liquid-to solid transition and the formation of aggregates as found in neurodegenerative diseases like Alzheimer’s disease or ALS. Understanding and exploiting IDPs requires accurate molecular models capturing their highly dynamic nature.

Challenge: Empirical interatomic potential models have been instrumental in the emergence of large-scale molecular dynamics (MD) simulations as an indispensable tool in the characterization of complex protein systems that are highly dynamic. However, currently available models are only suitable for the characterization of folded proteins but not study the much larger phase space of IDPs. We require significantly better means to model molecular interactions between IDPs and a solvent (mainly water) and how these solvent interactions (or solvation) is affected by thermodynamic parameters (e.g. T, pH) or salt.

Research Goals: The overall goal of the project is to establish and benchmark a technology pipeline for the development of accurate, computationally efficient and robust MLIPs (force fields) for quantitative atomistic modeling of IDPs.

Musqueam First Nation land acknowledegement

We honour xwməθkwəy̓ əm (Musqueam) on whose ancestral, unceded territory UBC Vancouver is situated. UBC Science is committed to building meaningful relationships with Indigenous peoples so we can advance Reconciliation and ensure traditional ways of knowing enrich our teaching and research.

Learn more: Musqueam First Nation

Data Science Institute

EOS Main Building
6339 Stores Road, Room 113C
dsi.admin@science.ubc.ca

Faculty of Science

Office of the Dean, Earth Sciences Building
2178–2207 Main Mall
Vancouver, BC Canada
V6T 1Z4
UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. A bookmark An ribbon to indicate a special marker. Calendar A calendar. Caret An arrowhead indicating direction. Time A clock. Chats Two speech clouds. External link An arrow pointing up and to the right. Facebook The logo for the Facebook social media service. A Facemask The medical facemask. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. Linkedin The logo for the LinkedIn social media service. Lock, closed A closed padlock. Lock, open An open padlock. Location Pin A map location pin. Mail An envelope. Mask A protective face mask. Menu Three horizontal lines indicating a menu. Minus A minus sign. Money A money bill. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. RSS Curved lines indicating information transfer. Search A magnifying glass. Arrow indicating share action A directional arrow. Spotify The logo for the Spotify music streaming service. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.