Personalized risk assessment in pediatric kidney transplantation using metabolomics data

Researcher headshots overlaid on a dna helix drawing

Awarded To

Gaby Cohen-Freue, Tom Blydt-Hansen

Post Doc Fellows

Drs. Cohen-Freue (Statistics) and Blydt-Hansen (Pediatrics) were awarded funding for their project on applying statistical models (i.e., classification) to identify a metabolomic signature for personalized risk assessment in pediatric patients receiving a transplated kidney. The funds from the DSI Postdoctoral Matching Fund Program will enable the team to apply and extend various machine learning methods to build a metabolomics classifer to predict long-term outcome (i.e., allograft survival). They will also integrate other molecular signatures (pre- and post-transplant) to further increase the robustness of their predicitve models.

Kidney transplantation is the most effective treatment for end-stage kidney failure and improves both survival and quality of life. It is not, however, a cure and most young people will experience complications that precipitate allograft failure. At present, children are all treated with a standard protocol for immune suppression, which ignores the wide heterogeneity in both immune responses and susceptibility to complications. As a result, some children suffer complications for excessive immune suppression whereas others may suffer rejection from insufficient immunosuppression. We aim to study how the metabolism state of the kidney recipient affects the evolution of the immune response to the allograft after transplant. Our goal is to identify a metabolomic signature using pre-transplant serum samples and machine learning techniques to support a precision-medicine approach to immunosuppressive treatment that can be tailored to the alloimmune risk-characteristics of each patient. Providing a personalized risk assessment would permit tailoring of treatment to optimize management of immunosuppression and avoid complications related to unnecessary treatment.

Musqueam First Nation land acknowledegement

We honour xwməθkwəy̓ əm (Musqueam) on whose ancestral, unceded territory UBC Vancouver is situated. UBC Science is committed to building meaningful relationships with Indigenous peoples so we can advance Reconciliation and ensure traditional ways of knowing enrich our teaching and research.

Learn more: Musqueam First Nation

Data Science Institute

EOS Main Building
6339 Stores Road, Room 113C
dsi.admin@science.ubc.ca

Faculty of Science

Office of the Dean, Earth Sciences Building
2178–2207 Main Mall
Vancouver, BC Canada
V6T 1Z4
UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. A bookmark An ribbon to indicate a special marker. Calendar A calendar. Caret An arrowhead indicating direction. Time A clock. Chats Two speech clouds. External link An arrow pointing up and to the right. Facebook The logo for the Facebook social media service. A Facemask The medical facemask. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. Linkedin The logo for the LinkedIn social media service. Lock, closed A closed padlock. Lock, open An open padlock. Location Pin A map location pin. Mail An envelope. Mask A protective face mask. Menu Three horizontal lines indicating a menu. Minus A minus sign. Money A money bill. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. RSS Curved lines indicating information transfer. Search A magnifying glass. Arrow indicating share action A directional arrow. Spotify The logo for the Spotify music streaming service. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.