
DENSE FORECASTING OF WILDFIRE
SMOKE PARTICULATE MATTER

USING
SPARSITY INVARIANT

CONVOLUTIONAL NEURAL
NETWORKS

SPARSE SPATIOTEMPORAL PREDICTION OF WILDFIRE SMOKE

PARTICULATE MATTER VIA CONVOLUTIONAL NEURAL NETWORKS

REPORT PREPARED BY

ASHUTOSH BHUDIA

BRANDON DOS REMEDIOS

MINNIE TENG

REN WANG

University of British Columbia
Vancouver

2020
UBC DATA SCIENCE FOR SOCIAL GOOD

BC CENTRE FOR DISEASE CONTROL

1 Abstract
Accurate forecasts of fine particulate matter (PM2.5) from wildfire smoke
are crucial to safeguarding cardiopulmonary public health. Existing fore-
casting systems are trained on sparse and inaccurate ground truths, and do
not take sufficient advantage of important spatial inductive biases. In this
work, we present a convolutional neural network which preserves sparsity
invariance throughout, and leverages multitask learning to perform dense
forecasts of PM2.5 values. We demonstrate that our model outperforms two
existing smoke forecasting systems during the 2018 and 2019 wildfire sea-
son in British Columbia, Canada, predicting PM2.5 at a grid resolution of
10 km, 24 hours in advance with high fidelity. Most interestingly, our model
also generalizes to meaningful smoke dispersion patterns despite training
with irregularly distributed ground truth PM2.5 values available in only <
0.5% of grid cells.

1

Contents
1 Abstract 1

2 Introduction 3
2.1 Project Motivation . 3
2.2 Project Strategy . 3
2.3 Data Science for Social Good . 3

3 Materials and Methods 4
3.1 Datasets . 4

4 CNN Architecture 6
4.1 Sparsity Invariant CNNs . 6
4.2 Multitask Learning . 6

5 Results and Discussion 7

6 Conclusion 8

Appendices 10

A Data-Download-Suite 10
A.1 Overview . 10
A.2 smoke/utils package . 10
A.3 smoke/ package . 12

B Data-Processing-Pipeline 14
B.1 Overview . 14
B.2 Pre-cleaning steps . 16
B.3 Parsing Step . 18
B.4 Cleaning Step . 22
B.5 NOAA Processing . 32
B.6 BC MoE PM2.5 Label Processing 35
B.7 Grid Representation . 35
B.8 Amalgamator . 37
B.9 Validation . 40
B.10 Recommendations . 41

2 Introduction

2.1 Project Motivation
Wildfire smoke leads to episodes of poor air quality in British Columbia (BC),
and exposure has been associated with a wide range of acute health effects
from respiratory symptoms through to premature mortality. Furthermore,
recent research indicates that these health effects can be experienced within
hours of smoke exposure, highlighting the absolute importance of reliable
wildfire smoke forecasts for protecting public health. However, forecasting
wildfire smoke is even more challenging than forecasting the weather given
the many uncertainties in fire location, fire growth, fuel consumption, emis-
sions factors, and plume rise. As such, there is growing agreement that en-
semble smoke forecasts may be more useful than any single smoke forecast
in isolation.

2.2 Project Strategy
Air quality impacts of wildfires are currently communicated using a com-
bination of air pollution measurements at sparsely distributed monitoring
networks, simulated forecasts of air quality, and satellite imagery. Artificial
intelligence (AI) algorithms can process vast quantities of data; its ability
to process information from multiple sources efficiently may help to improve
wildfire smoke forecasts. Here, we present an example of a convolutional
neural network, specifically the UNet, which we propose to be capable of pre-
dict presence and magnitude fire smoke presence using input data sources
from simulated forecasts and satellite imagery. We aim to demonstrate this
concept by predicting retrospective wildfire smokes in BC using data from
2018-2019.

2.3 Data Science for Social Good
Early warnings about smoke are critical for protecting population health,
and better predictions lead to better public health outcomes. This model at-
tempts to improve on current wildfire smoke models and the improvements
may potentially be used by fire rescue services, health and environmental
agencies and the general public to better manage the health risks for fire
smoke. With this model we are using PM2.5 values collected from approx-
imately 80 air monitoring stations as ground truths to compare our predic-
tions to. However, the 80 stations are disproportionately scattered through-
out the province, with stations mostly concentrated in more populated areas.

3

Basing ground truths on disproportionately located stations may introduce
bias to the model, and potentially leading to less accurate or available pre-
dictions for Indigenous Canadians that live in rural or remote areas.

3 Materials and Methods

3.1 Datasets
3.1.1 Forecasting Models

Various deterministic and statistical models for predicting PM2.5 exist. In-
spired by paradigms in residual learning, we incorporate these baseline fore-
casting models as inputs to our convolutional model. The idea is to allow our
network to leverage prior knowledge contained within other models, such
as influences of meteorological conditions, fire behavior evolution and smoke
dispersion mechanics. We then simply learn a function which models po-
tential improvements to these baselines in order to better attain the ground
truth PM2.5 values. In particular, we incorporate two prominent smoke par-
ticulate matter forecasting systems, FireWork and BlueSky Canada over the
grid defined in section 3.1.5.

3.1.2 Meteorological Data

Previous work has shown that the Aerosol Optical Depth (AOD) metric is a
meaningful proxy for PM2.5. We therefore include AOD from the U.S. Na-
tional Aeronautics and Space Administration (NASA) Moderate Resolution
Imaging Spectroradiometer (MODIS) instruments, available every 6 hours
in a 24 hour period. We also include meteorological information from the
NASA Modern Era Retrospective Analysis for Research and Applications,
Version 2 (MEERA-2) program. We use eastward and northward compo-
nents of wind vectors 50m above the surface, and at the 250 hPa and 500
hPa pressure levels, with a spatial resolution of 0.5◦ × 0.625◦ (latitude ×
longitude).

3.1.3 Wildfire Data

MODIS also provides data on fire locations and intensity. Intensities are
approximated by the fire radiative power (FRP) variable, and fire locations
are specified by a weighted centroid localization of FRP values in all 1-km
× 1-km fire pixels (as determined by the active fire product). Additionally,
we include direct observations of smoke plumes from wildfires from the U.S.

4

National Oceanic and Atmospheric Administration (NOAA. Analysts hand
draw these smoke plume boundaries based on available data from various
fire detection sources.

3.1.4 Particulate Matter Ground Truth

For ground truth PM2.5 values, we use the 2018 and 2019 1-hour aver-
age PM2.5 measurements from 56 air quality monitoring stations through
British Columbia (courtesy of the British Columbia Ministry of Environment
and Climate Change Strategy). We log transform the values as per to ad-
dress its heavy right-skewed distribution.

3.1.5 Multidimensional Wildfire Composition Images

In order to amalgamate these varied data sources into a temporally and spa-
tially consistent format which can be consumed by our convolutional neu-
ral network we first define a regular, approximately square grid over the
province of British Columbia, Canada, with (latitude, longitude) corners at
(57.87, -133.54), (47.31, -127.18), (60.61, -112.19), (49.43, -110.61), and a grid
resolution of 10-km x 10-km cells covering the roughly 1250-km x 1250-km
area. This will serve as an image-like canvas on which we can populate
different pixels with the requisite features.

Figure 1: Multiheaded model architecture. Each SpConv layer involves
a sparse convolution layer as described in with the indicated kernel size and
number of filters, with average pooling of the sparsity mask, followed by a
non-linear activation (ReLU throughout, except the final layer in the indi-
vidual task branches, where no activation is used).

Second, note that we seek to make predictions 24-hours in advance. We

5

extract temporal and spatial (latitude/longitude) labels for each element of
each dataset. Then, for each time where we have PM2.5 ground truths, we
project available datapoints from all datasets 24-hours prior to their corre-
sponding cells and channels within our defined grid. Cells and channels for
unavailable measurements are simply set to the closest available measure-
ments from an earlier time, or to -1 when even those are absent. We also do
a similar projection for the available PM2.5 ground truths.

The final result is a 125 × 125 × 9-dimensional input image for each
timepoint of predictive interest, and a corresponding sparse 125 × 125 × 1-
dimensional output image of PM2.5 labels corresponding to 24-hours there-
after. In total, we train on 4870, validate on 610 and test on 610 such input-
output pairs, randomly shuffled.

4 CNN Architecture

4.1 Sparsity Invariant CNNs
Sparsity invariant CNNs have been used as a means to preserve sparsity
constraints throughout all layers of a convolutional neural network by ex-
plicitly accounting for a binary mask describing the sparsity pattern. In
particular, such a “sparse” convolution involves pooling only over observed
pixels of the image, and normalizing according to the mask. Here, our spar-
sity mask describes the locations of the available ground truth PM2.5 val-
ues over the spatial grid. While [11] use max pooling to downsample the
binary mask after each sparse operation, we find that average pooling leads
to smoother inpainting of the resultant PM2.5 output map. We employ these
sparsity invariant layers in a core feature extraction backbone for FIRENET,
as seen in Fig. 1.

4.2 Multitask Learning
Inspired by multitask learning to reduce overfitting, we also define addi-
tional autoencoding tasks (see top and bottom branches in Fig. 1 which each
output a 125 × 125 × 1 map, consistent with the original PM2.5 forecasts
of the FireWork and BlueSky Canada models). We hope to provide learning
signal where ground truths are unavailable, allowing FIRENET to overcome
extreme sparsity issues by borrowing from the learned dynamics contained
within the baseline forecasting models. Then our final model loss L is de-
fined as:

6

5 Results and Discussion
We assess performance of FIRENET by comparing model PM2.5 predictions
with FireWork and BlueSky Canada PM2.5 predictions at the 56 air moni-
toring stations over timepoints within the defined test set. We also look at
heatmaps of model predictions to ascertain whether or not meaningful in-
terpolations are made in regions where ground truths are not available.

Table 1 details our model performance against the described baselines.
Because PM2.5 values can be dramatically higher during the peak of the
fire season in July and August, we separate this assessment for the early,
mid and late fire seasons (April to May, June to August, and September to
October, respectively). FIRENET outperforms both FireWork and BlueSky
Canada at all points in the fire season, validating our residual learning ap-
proach and verifying that additional raw data is semantically useful for our
model in improving the baseline predictions.

7

In Fig. 2, we show model predictions over the entire defined grid. Each
pixel within each heatmap represents a 100 km2 area. Firstly, note that
we accurately capture highs and lows of PM2.5 in correspondence with the
fire season (beginning in April, peaking in July and August, and ending in
October). Secondly, we see that despite lacking ground truth PM2.5 values
in between air monitoring stations, FIRENET is able to interpolate PM2.5
meaningfully, representing complex and diverse PM2.5 falloff patterns and
interactions between smoke dispersion from various fires. More work clearly
needs to be done to verify these implied dynamics, and we leave this for the
future.

6 Conclusion
In this work, we tackle the challenging but important task of forecasting
the public health burden of smoke particulate matter perpetuated by wild-
fires. By incorporating baseline forecasting models and raw meteorological
and wildfire data variables from satellite measuring systems, we are able
to design an input data format which preserves spatial relationships. We
then overcome sparsity issues plaguing more traditional statistical modeling
frameworks by introducing sparsity invariant layers, and defining auxiliary

8

tasks that provide guiding intermediate learning signal to the network. We
demonstrate strong results on real world wildfires as compared to forecast-
ing systems currently in use. Future work will ascertain that our method is
generalizable outside British Columbia, Canada, and that the smoke partic-
ulate matter behaviors modeled by our network are consistent with domain
expectations.

9

Appendices
A Data-Download-Suite

A.1 Overview
This package is used to download model input (forcing) files. This is neces-

sary because different download providers have different requirements, thus
automation is required. It also provides APIs (application Programming In-
terfaces) for developing downloaders that can fetch files from HTTP and FTP
servers, and from NASA’s LAADS download portal through scripting. That
is, it provides functionality including web scraping, authentication, multi-
threaded downloads and so on.

A.1.1 Code Structure

smoke/utils contains the core code providing APIs for scripting
smoke/ contains higher level code, which is used to do the actual scripting

for the downloading, as well as provide user interface(s). An exemplar con-
figuration file, and a proposed means of implementing a download deamon
are also included.

A.2 smoke/utils package
A.2.1 conf_tools.py

Provides tools for validating and loading a download configuration file. It is
implemented as a python function wrapper, and can simply be added as a
decorator to any function that consumes a smoke_forcing configuration file.

It ensures that:

• The function contains the required ‘config‘ argument, and that it is
provided by the user

• The configuration file exists and is a valid file

• The configuration is passed on to the function as a python dictionary

A.2.2 download.py

This module contains the base class (‘Download‘) that provides the methods
that all other download processes must contain. The class itself provides the
APIs for HTTP(S) downloads.

10

Here is a description of the methods, and what they do:

• ‘mkdir‘ checks that the directory on the local computer to which we
want to download files and (1) checks if is accessible and (2) we have
the rights to write to it (3) creates the directory if it does not already
exist

• ‘get_checksum‘ is a static method that is capable of consuming files
and returning its cksum, md5, sha1, sha512 or crc32 checksum (as
specified)

• ‘download‘ fetches files and saves them to the desired location. A max-
imum of three retries are made to account for, say, network issues. The
checksum is also verified with the server if required

• ‘get_file_name‘ is used to obtain the file name and extension from the
download URL

• download_concurrently uses a thread pool to download files concur-
rently. It is generalised, and requires only an override of the ‘download‘
method to adapt its behavior to inheriting classes

A.2.3 ftp.py

This module extends the ‘Download‘ class, and is used to authenticate with
and download files from an FTP server.

Here is a description of the methods, and what they do:

• ‘reset_connection is used to authenticate with FTP servers, and raises
an error in the event of failure

• ‘download‘ overrides the original method, and is tailored for the FTP
protocol

• ‘make_download_dict‘ is used to recursively traverse and FTP server’s
folders to look for files, and creates a nested python dictionary of file
locations in preparation for the download process

A.2.4 url_downloader.py

Extends the ‘Download‘ class. Overrides the ‘download‘ method to enable
chunked downloads of large files for memory efficiency.

11

A.2.5 url_parse.py

Provides generic high level functions for web scraping.

• ‘get_auth‘ returns an authentication token

• ‘parse_protected_html‘ produces a BeautifulSoup parsed webpage

• ‘get_url_list‘ return a list of links from a parsed webpage

• ‘filter_by_ext‘ enables filtering of URLs by file extension

A.3 smoke/ package
The root of the package includes higher level scripting that uses the APIs
from the ‘smoke/utils‘ package. The basic hierarchy is:

1. ‘urls.py‘ contains classes used to fetch/build and compile a list of URLs
from each download source

2. ‘downloaders.py’ contains classes used to download files from each down-
load source, provided the URLs

3. ‘main.py‘ provides the user interface and runs the downloaders

The instances that have been implemented are heavily documented, and it
is recommended that they be used as templates for future additions.

A.3.1 urls.py

urls.py has a ‘URLs‘ abstract base class with methods:

• ‘generate_dates‘, a static method, which can be used to return a list of
dates within a given range at a given interval

• ‘get_urls‘, the abstract static method that each inheriting class must
implement. It is the main method called to generate URLs

• ‘validate_url‘ uses a maximum of 3 retries to communicate with an
HTTP server to verify whether a URL is valid. This is particularly
useful when URLs are generated from a pattern and not scraped from
a webpage or server

• ‘validate_urls‘ uses a thread pool to validate URLs concurrently

• ‘group by year‘ is used to return a dictionary of lists of URLs sorted by
year.

12

A.3.2 downloaders.py

downloaders.py has a ‘Downloader‘ abstract base class with methods:

• ‘run‘, an abstract method. It is the main method to be executed by
the ‘main‘ program. essentially, when implemented, it uses the list of
URLs, sets up the local directories for downloading, and monitors the
download process.

• ‘parse_time‘, a static method that can be used to parse strings into a
python datetime

A.3.3 config

An exemplar configuration file is included in the repository. It is recom-
mended to use a separate git repository to track the configuration file. Hash-
tags can be used to comment out block directives, in which case the program
will automatically ignore them. The directives themselves can be listed in
any particular order, provided only that the hierarchy is maintained.

A.3.4 Installation

To install the package, these are the steps to be followed (in a linux terminal.
Ensure you have python 3.8 and git installed in the terminal):

1. Clone the repository. Open a terminal, and navigate to the direc-
tory where you wich to clone the repository. Then execute ‘git clone
git@gitlab.math.ubc.ca:smoke/smoke_forcing.git‘

2. ‘cd‘ into the cloned repository, and execute ‘pip install –user –editable‘.
this will install the python package on your interpreter, and allow it to
be modified if chnages ar emade to the repository.

3. To your ‘ .bashrc‘ file, add the following ‘export PATH= /.local/bin:$PATH‘
and save the file. Then execute ‘source /.bashrc‘ to refresh.

A.3.5 Usage

Due to the installation, the command-line tool is now available system wide.
After you have edited your ‘config.yml‘ file as desired, save it and:

1. Open a terminal and execute ‘smoke-forcing $path-to-config‘. That’s it!

13

Use ‘smoke-forcing –help‘ to bring up the help dialog in the terminal. The de-
bugging options can be used to provide detailed dumps of execution progress
and errors. If a download is anticipated to take a considerable amount of
time, especially over SSH where there is the risk of being logged out, con-
sider using the ‘tmux‘ utility on the computer where the files are being down-
loaded. This has the added benefit of being able to check in on the download
progress from any other machine (under the same user account).

B Data-Processing-Pipeline

B.1 Overview
B.1.1 Description

The data processing pipeline is the code base that operates between the
download suite of smoke_forcing and the model of smoke-models. This pipeline
has the primary function of converting raw data files downloaded from the
download suite of smoke_forcing, to prediction data tensors that the CNN
model can train off of. For the Firework dataset, the BlueSky dataset, the
MODIS AOD dataset, and with minor alterations the MODIS FRP dataset,
this conversion is done through a three step process, of parsing raw data
files, cleaning/converting data into saved grids, then amalgamating data to-
gether into a tensor. NOAA and BC MoE data require different loading steps
which will be explained in sections B.5 and B.6 respectively.

B.1.2 Code Structure

The code base of the data processing pipeline is separated into two ma-
jor directories after the root directory of smoke, which are smoke/smoke
and smoke/tests. The smoke/smoke directory contains all of the pipeline
infrastructure for the conversion process, and will be the main directory
to look in for the code that is being described in the B Data-Processing-
Pipeline section. The smoke/smoke directory is divided further into 7 sub-
directories named amalgamate, box, clean, convert, load, noaa, and split.
smoke/smoke/amalgamate contains the Amalgamator and run_amalgamator
script which are used for creating the final pytorch tensors from saved grids,
explained in B.8. smoke/smoke/box contains the Box, FeatureTimeSpace-
Grid, and TemporaryTimeSpaceGrid which describe the grid and store data
regarding it, explained respectively in B.7.1, B.7.3, and B.7.4. smoke/smoke/
convert contains scripts for saving out NetCDF4 files which result from the
parsing steps of B.3 if those types of files are desired. smoke/smoke/clean

14

contains the cleaner tool set of the CellCruncher and TimeCruncher, the
run_cleaners script, and all cleaners sans the noaa cleaner, which are all
used in the process of converting parsed data to grids, and are all explained
throughout B.4. smoke/smoke/load contains the GeographicalDataset, and
all parsers sans the noaa parser, which are all used in the process of parsing
raw data files, explained throughout B.3. smoke/smoke/noaa contains the
Geohashparser and BoxMapper objects which in tandem cover the NOAA
parsing and cleaning process from raw data file to grid, and are explained
throughout B.5. Finally, smoke/smoke/split contains the functions for split-
ting the MODIS FRP fire archive shape file, and is explained in B.2.1. The
smoke/tests directory contains sub-directories corresponding to major ones
within smoke/smoke which test the objects within the directories of their
namesake. These directories mainly contain unit testing for the objects
with an interesting exception on the manual visual testing of the cleaners in
smoke/tests/clean, and will be described in B.9 Validation.

B.1.3 Full Ordered Steps

This subsection will describe the ordered steps necessary to use the pipeline
to convert raw data files into pytorch tensors in the standard fashion which
was done for the data in this report. The following legend will apply for these
steps, stating which datasets require any one particular step, and thus that
the particular step must be performed in order to place that dataset’s data
in the resulting pytorch tensor:

• FW - Firework
• BS - BlueSky Canada
• MA - MODIS AOD
• MF - MODIS FRP
• NO - NOAA Smoke Plume

Note: This process assumes that raw data files using the section A Download-
Suite have already been downloaded, and have known locations on the sys-
tem.

1. (MF) Split the fire_archive shape file into individual hdf files into some
output directory, using either the smoke/smoke/frp_splitter.py script or
by importing partition_to_hour from that .py file, as explained in B.2.1.

2. (FW, BS, MA, MF) Adjust the
smoke/smoke/clean/run_cleaners_config.yml file (or some other yaml
file with a similar format) to specify grid resolution in km, time range
to clean/convert a saved FeatureTimeSpaceGrid grid daily inside, pa-
rameters of which datasets you want to clean (by adjusting the run

15

parameter), and various parameters specific to each dataset pertain-
ing to raw data file location, data window size, etc. This is explained
more in B.4.6.

3. (FW, BS, MA, MF) Run the smoke/smoke/clean/run_cleaners.py script
giving the path to the previous adjusted yaml file. This step will load
information from the raw data files, process them into consistent grids,
and save those grids into FeatureTimeSpaceGrid’s tar.gz files. These
processed files are simply objects containing data for the dataset at a
location time and space, for a particular data measurement (“feature”)
such as PM2.5 forecast or corrected optical depth at 0.47 microns, for
example. This object is explained more in B.7.3.

4. (NO) Run the NOAA processing branch as per instructions in Minnie’s
video and throughout B.5.

5. (FW, BS, MA, MF, NO) Adjust the
smoke/smoke/amalgamate/run_amalgamator_config.yml file (or some
other yaml file with a similar format) to specify time range for tensors,
time resolution (e.g. one tensor for every hour), paths to directories
containing the saved processed files, and which datasets to include in
the tensor (if the dataset is not desired there is no need to clean it).

6. (FW, BS, MA, MF, NO) Run the
smoke/smoke/amalgamate/run_amalgamator.py script, giving the path
to the previously adjusted config, and an output directory for the re-
sulting tensors. This will parse the config then, using the specifica-
tions, will generate prediction data pytorch tensors for every specified
time that has a complete prediction set (valid prediction data at that
point in time across all datasets added), which is explained further in
B.8. This will complete the pipeline process leaving one with a direc-
tory full of prediction data tensors.

B.2 Pre-cleaning steps
B.2.1 FRP Shape File Splitting

This subsection will explain the MODIS FRP shape file splitting process,
explaining why it was made and how to use it to split an FRP fire archive
shape file. This splitting process takes place using the
smoke/smoke/split/frp_splitter.py file with either the partition_to_hour func-
tion contained within, or by running the .py file as a whole. This splitting
process is done in order to get the information contained within the MODIS

16

FRP fire archive .shp file, into the form of individual files with smaller pe-
riods of time and with data held within a proper grid of latitudes and longi-
tudes instead of just points This such that the FRP data is similar to that
of Firework, BlueSky Canada, and MODIS AOD files. Doing this will al-
low the MODIS FRP dataset to use the abstracted GenericParser, Generic-
Cleaner, and other associated objects, which were made for files like Fire-
work, Bluesky, or MODIS AOD, giving it full access to that entire code suite
which makes code maintenance and development much easier. This also
prevents us from having to load the entire FRP shp file when generating
our grids, which saves on time and prevents us from overloading RAM. The
drawback would of course be that this adds an additional step and takes up
additional drive space, but the gains in centralized code, speed, not having
to recreate a ton of code, and other benefits far outweigh this.

The FRP splitting process is merely an explanation of what happens in the
partition_to_hour function as any splitting, including the main script run of
the .py file, simply involve the calling of the function. This splitting process
is as follows, and assumes that the shape file is given with all necessary
components to load:

1. Load the shape file using GeoPandas and convert it into a xarray Dataset
which will contain rows of individual FRP measurements with columns
of ACQ_DATE/ACQ_TIME (when point was measured), FRP (the frp
value), and LATITUDE/LONGITUDE (where point was measured)

2. Extract from the rows, all ACQ_DATE/ACQ_TIME to get a full list of
individual times present in the dataset, then pull from all of these the
unique set of datetimes to the hour. This will allow us to group all
data to files based on which unique hour they were measured within.
Grouping based on hour was chosen as grouping on each day created
individual files that were multiple gigabytes in size which is too large,
and grouping on minute created far too many individual files.

3. For each unique hour in the data set, the following process will be
performed

• Gather all FRP points that occur during that hour and extract out
their times, positions, and frp measurements

• Get a unique list of latitude and longitude for all points, used as
the 2 space axes, and form a grid with the meshing of both lists

• For each time make a grid of the size defined by the space axes

17

• Populate the grid with data at that time, at its corresponding lat-
itude and longitude position in the grid, leaving the rest as nan
values

• Place the populated grid of data in an xarray DataArray and
Dataset with the ordered time axis, latitude axis, and longitude
axis as coordinates

• Save out the xarray Dataset into an hdf of data in that hour

After that process is completed for each hour, the shape file will have been
completely partitioned in hdf files each representative of one hour in the
MODIS FRP dataset.

The splitter can be used either by importing and calling the partition_to_hour
function from smoke.clean.split.frp_splitter.py or by running the frp_splitter.py
file from the command line. In either case, the two arguments necessary to
specify are the path to the shape file to split, and an output directory to store
the split hdf files. The following is an example call to frp_splitter.py from the
command line, assuming one’s working directory is smoke/smoke/split

python frp_splitter.py <frp.shp file path> <output directory path>

B.3 Parsing Step
B.3.1 GeographicalDataset

The GeographicalDataset object is contained within
smoke/smoke/datasets.py. It was created to serve as a common data object,
such that accessing geographical data for all differing datasets and data
files, could be done in the exact same way after being loaded into one of
these objects. This object contains information about feature (what is being
measured), time, latitude, and longitude for each data measurement in the
data file that is loaded into it.

A GeographicalDataset object is essentially a wrapper around an xarray
Dataset with standardized coordinate names and data storage form. The in-
ner Dataset of any GeographicalDataset, is data is stored in 3 dimensional
grids of axes time, latitude, and longitude in that order, with one 3D grid for
each feature contained within. To extract information from a Geographical-
Dataset one can call any of get_latitudes, get_longitudes, get_features, and
get_times to pull out an array of the ordered entries along that particular

18

coordinate axis. To pull out one of the 3D grids for a feature, one can use
the get_feature_data_array method, with an argument of the feature name
(which can be found from the get_features method), which will return an
xarray DataArray of gridded data across time, latitude and longitude.

The requirements to create a GeographicalDataset are essentially an xar-
ray Dataset containing an arbitrary amount of features each with a corre-
sponding DataArray. Each of these DataArrays must share an identical 3
dimensional coordinate system labelled appropriately with the names “time”
for time, “lat” for latitude, and “lon” for longitude. Data can then populate
the DataArray as appropriate. Creating a GeographicalDataset requires
passing one xarray Dataset of these specifications as an argument, and Ge-
ographicalDataset will check to make sure that the requirements are met.

B.3.2 GenericParser

The GenericParser is an abstract object that the other parsers extend,
which aims to hold functions to convert a raw data file at some given path
into a standardized GeographicalDataset object. It does this with the parse_file
method which calls an abstract method convert_raw_to_dataset on a raw
data file path given, using the abstract method to load and manipulate the
data of the file into an xarray Dataset of the specifications for a Geograph-
icalDataset, then creates a GeographicalDataset with that xarray Dataset,
and returns the GeographicalDataset. All extended objects (all parsers) im-
plement this convert_raw_to_dataset method, and thus contain the process
necessary to convert files of that specific dataset, to the form of a Geographi-
calDataset.The GenericParser object is located in smoke/smoke/load/parsers.py
along with all of the other parsers from B.3.3 onwards.

B.3.3 FireworkParser

The FireworkParser object is an implementation of the GenericParser ob-
ject which overrides the convert_raw_to_dataset method with one contain-
ing the process for specifically converting a Firework Geotiff file into a Geo-
graphicalDataset object. This process is as follows:

1. Load the FireworkGeotiff, via a given file path, with xarray’s open_rasterio
function, which uses rasterio as a backend, and loads the geotiff into
a standard xarray DataArray object of rows of individual data points,
with columns of x, y, and band

19

2. Rename the x column to “lon”, y column to “lat”, and band to “time”,
which are the proper naming specifications required by the Geograph-
icalDataset object, and are true to what x, y, and band represent in the
geotiff

3. Since start time is not included in meta data of the Firework Geotiff,
extract the starting time from the file name

4. Since each “band” (now labelled “time”) represents n band hours in the
future from the zeroth hour forecast (current state) of the zeroth index
band, use the band/time column to create an explicit array of absolute
times, from the relative time hours in the future that band originally
represented, and replace “time” column with that

5. Place tweaked DataArray object into a xarray Dataset under feature
name “PM25Forecast” (meaning forecast of PM2.5) and return that
Dataset which now has specifications required for the creation of a
GeographicalDataset object

B.3.4 BlueSkyParser

The BlueskyParser object is an implementation of the GenericParser ob-
ject which overrides the convert_raw_to_dataset method with one contain-
ing the process for specifically converting a Bluesky NetCDF4 file into a
GeographicalDataset object. This process is as follows:

1. Open the NetCDF4 file into an xarray Dataset object, using the stan-
dard xarray open_dataset function, which loads the file’s data with it
along the index coordinates of ROW, COL, and TSTEP, and alongside
meta data. The meta data contains the amount of latitude/longitude
each ROW/COL cell holds and the objective time values in UTC strings
of each TSTEP under the attribute TFLAG

2. Using the amount of latitude and longitude each cell represents under
the attributes YCELL and XCELL respectively, and the center point
lat/lon for both arrays under YCENT and XCENT, create 1D coordi-
nate arrays of the objective latitudes and longitudes to replace the
index coordinates of ROW and COL. Center is used rather than the
origin point, to reduce the uncertainty that comes from the precision
limitations on YCELL and XCELL. Latitudes are flipped over at the
end of this process due to the nature of grids in programming lan-
guages. Low row indices mean high y position in grids and vice versa,
so since the 1D latitude coordinate array starts as lowest to highest,

20

it is flipped to be highest to lowest, so that high latitudes are paired
with low row indices meaning high grid placement, and low latitudes
are paired with high row indices meaning low grid placement

3. Using the objective string time values under the attribute TFLAG, con-
vert the strings to datetime objects to create a 1D coordinate array of
objective UTC time.

4. Rename the index coordinates of the Dataset from “ROW” to “lat”,
“COL” to “lon”, and “TSTEP” to “time” to have dimension names match-
ing the specifications to create a GeographicalDataset object

5. Place the gridded data of the Dataset, into a new xarray DataArray
object with the new coordinates of the 3 1D coordinate arrays, so that
the grid is not marked out by explicit time, latitude, and longitude,
instead of by index coordinates and corresponding meta data

6. Place the new DataArray object into a new xarray Dataset under fea-
ture name “PM25Forecast” (meaning forecast of PM2.5) and return
that Dataset which now has specifications required for the creation
of a GeographicalDataset object

B.3.5 MODISAODParser

The MODISAODParser object is an implementation of the GenericParser
object which overrides the convert_raw_to_dataset method with one contain-
ing the process for specifically converting a MODIS AOD hdf file into a Geo-
graphicalDataset object. This process is as follows:

1. Load the MODIS AOD hdf file into an xarray Dataset object, via xar-
ray’s open_dataset function, specifically using the engine “pynio” which
is required for NASA LAAD’s specific hdf file format (the file could not
be loaded by standard NetCDF3 or NetCDF4 libraries). Pynio does not
have a Windows OS port so WSL will be required to use this parser, if
on a Windows system

2. Assign the “Latitude” and “Longitude” attributes explicitly as coordi-
nates for data, instead of just being another attribute in Dataset, and
with names “lat” and “lon” per GeographicalDataset specifications

3. The Dataset attribute “Corrected_Optical_Depth_Land” contains three
distinct measurements in its DataArray at 0.47, 0.55, and 0.65 mi-
crons, so separate those three out from the single DataArray into three
separate DataArrays

21

4. Extract the DataArray’s of attributes
“Corrected_Optical_Depth_Land_wav2p1” and
“Mass_Concentration_Land” as well

5. With these 5 DataArrays objects being separated out, store them in a
new xarray Dataset object under the feature names
"Corrected_Optical_Depth_Land_Solution_3_Land_47",
"Corrected_Optical_Depth_Land_Solution_3_Land_55",
"Corrected_Optical_Depth_Land_Solution_3_Land_65",
"Corrected_Optical_Depth_Land_wav2p1", and
"Mass_Concentration_Land".

6. All measurements occur at the same time so using PVL, which the
meta data is written in, extract the time that the measurements were
measured at, and use that single entry as the “time” coordinate for the
Dataset

7. Return the Dataset which now has the specifications to create a Geo-
graphicalDataset object

B.3.6 MODISFRPParser

The MODISFRPParser object is an implementation of the GenericParser
object which overrides the convert_raw_to_dataset method with one contain-
ing the process for specifically converting a split MODIS FRP files into a
GeographicalDataset object. During the splitting process, the saved split
hdf files are already put into a format fulfilling the GeographicalDataset
specification, so the files are simply loaded into xarray Dataset objects and
returned

B.4 Cleaning Step
B.4.1 GenericCleaner and the General Cleaning Process

The cleaning process is essentially the process of crunching data from a
single dataset’s multiple raw data files, into a single object containing stan-
dardized space grids, along standardized points in time, for a set number
of features. This process is necessary as in the amalgamator, when produc-
ing pytorch tensors, it is necessary to draw space grids for each feature at
a certain matching time across all datasets, and this would not be possible
without crunching that data down into standard known spaces and times.
This process essentially boils down to two core steps when looking at it at

22

the highest level possible. The first step is to find and select all of the raw
data files that contain data which is to be put into the resulting grid. The
second step is to convert those raw data files into that grid.

The GenericCleaner is an abstract object which all other cleaners extend,
and one that contains the method create_featuretimespacegrid which con-
tains the two step process that was just mentioned. The GenericParser
contains only the implementation for the first step however. Any object
fully implementing GenericCleaner will need to include an implementation
of the abstract attributes file_name_regex, file_name_datetime_regex, and
file_name_datetime_fmt. GenericCleaner uses these attributes, along with
a given file directory and a given data time window, to get the paths to all
the raw data files that are to be included, using the get_files method, which
is its implementation of the first step. It is important to note that files must
include a datetime string in their name, in order to be properly selected by
the get_files method. This file selection on date is necessary as real time pre-
dictions using the model will require training on files released at previous
times to the prediction, thus requiring us to use the cleaners to create space
time grids of present times, using data files from earlier times (so data win-
dow selection is necessary since the grid times can be offset from the data
file’s specific marked time). More specifically in the case of forecasts, the
files do not have a single measurement for a single time, but rather multiple
forecasts can forecast a single time, so data range selection on file name date
is necessary to choose which forecast day to use, or to select all of them. The
get_files method functions as follows:

1. Grab all files names matching the file_name_regex attributes from the
given folder

2. Grab all the marking dates of the files from their file names using
file_name_datetime_regex to search for it and file_name_datetime_fmt
to parse it into a datetime object

3. Filter, only keeping files within the given data time window

4. Create absolute paths out of those files names, and return that list of
paths as strings

The list of absolute file paths is then passed into the abstract method con-
vert_files_tofeaturetimespacegrid which will contain the processing second
high level step, and will be implemented by the extensions of the Generic-
Cleaner. This method will require the crunching down of data across time

23

and grid space, as well as information on which features will be included,
how to load the file, and if the space 1D axes require meshing which is why
the abstract attributes of time_cruncher, cell_cruncher,
expected_features_array, parser, and requires_mesh must also be implemented
by anything extending the GenericCleaner. The GenericCleaner is located
in smoke/smoke/clean/cleaners.py.

B.4.2 Cleaning Tools

The cleaners have two tools available to them, which are located in
smoke/smoke/clean/toolset.py. These two cleaners are the TimeCruncher
and the CellCruncher, which respectively crunch data along the time axis
and crunch data along the space axis, in order to crunch them down to stan-
dardized unique points along the axes of the spacetime grids. Both were
created as abstract objects in order to make the functionality of how they
crunch down one group of data modular, such that depending on the dataset
one could easily swap it out for another.

The CellCruncher is an abstract object which is meant to crunch data
down spatially, such that in the space grid every single grid cell has at most
one data assignment. This is necessary as overlapping assignments, if not
dealt with, will cause data to just be replaced which will incorrectly repre-
sent data in the final grid product. Its main method crunch_data performs
this action, taking in an array of paired grid assignments and an array of cor-
responding data, and crunching them outputting a masked array of unique
grid assignments and a corresponding array of crunched down data. It also
has the secondary functionality of filtering out any invalid assignments and
the data associated with them. It does all of this through the following pro-
cess:

1. Data and grid assignments are flattened in case of any 2D shaped as-
signments/data being given to it. 2D shape will not be preserved at the
end due to similar assignments being crunched to one number, and non
assigns being thrown out, so doing this at the front makes the process
much easier

2. numpy.ma.array has a bug where the boolean array of the mask can
come out as just a single entry, so if this happens this step just rebuilds
the array to be the same size as the assignments as it should be. This
only happens when the assignment is a numpy.bool_ of False.

24

3. Filter out any invalid assignments and corresponding data as the mask
dictates, which leaves us with a standard numpy array for both assign-
ments and data

4. Check that there are any assignments left after filtering, and skip the
rest of the process if all assignments had been filtered out

5. Find how many times each pair assignment occur

6. Using complex numbers turn the pair assignments into a single num-
ber, and filter out any (including data) that only occur once as they do
not need to be crunched. This will save time

7. For the rest which have overlapping data in single cells crunch all in
the same cell down using the abstract method crunch_similar_cells
which will return a single data entry for that cell

8. Return the list of now unique grid assignments and the corresponding
data

The crunch_similar_cells method is the swappable functionality of the Cell-
Cruncher, as depending on the dataset one might want to do a specific oper-
ation on overlapping data such as taking a sum for something like overlap-
ping smoke clouds, or taking a mean for something like PM2.5 measurement.
The implementations of CellCruncher contain the functionality for this, with
the two existing ones being MeanCellCruncher, which returns a mean of ev-
erything overlapping, and SumCellCruncher, which returns a sum of every-
thing overlapping.

The TimeCruncher is an abstract object meant to crunch down similar
spatial grid data on time from an arbitrary number of points on a time co-
ordinate axis, to a regular standardized evenly spaced time coordinate axis.
It takes in two TemporaryTimeSpaceGrid (TTSG) objects as arguments, one
of which is populated with data at the arbitrary number of points along a
time axis, which will be called the original TTSG, and one which is unpop-
ulated with data, but has a standardized evenly spaced time axis within it
which will be called the target TTSG. It also takes an argument of time bin
size of the target TTSG in hours for sake of explicit setting so as to not have
to extrapolate from the time coordinate axis of the target TTSG. The Time-
Cruncher essentially functions to take the data from the original TTSG and
crunch it down to fit into the standardized time of the target TTSG, which
it does through it’s crunch_to_result_TTSG method. This method does this
through the following process:

25

1. Grab the time axis of the original TTSG and the time axis of the target
TTSG

2. Check to make sure that there are populated grids in the TTSG, if
not just return the empty target TTSG as there is no valid values to
populate it with

3. For every time on the time axis of our target TTSG, gather all of the
space grids with times between time and time - time bin size from the
original TTSG and crunch all of them to a single space grid for that
time using the abstract method crunch_to_single_grid

4. Populate those points in the target TTSG with the crunched grids and
return the target TTSG

The crunch_to_single_grid is the swappable method for the TimeCruncher
and is implemented by any full implementation of TimeCruncher. The im-
plementation will contain the process necessary to turn an arbitrary number
of space grids into a single space grid for a given time. The only implementa-
tion so far in the code is the AvgTimeBinTimeCruncher which simply takes a
mean across time of the space grids given, however there are multiple other
functions that can be added for different ways of crunching those space grids.

To expand the toolset and create additional functionality for either the
CellCruncher or the TimeCruncher one must simply create an implemen-
tation of either, replacing the crunch_data or crunch_to_single_grid method
respectively. The new cruncher can then be added to the desired cleaner, un-
der the abstract attributes time_cruncher and cell_cruncher, to incorporate
the new functionality into the cleaning process.

B.4.3 GeneralConversionCleaner

The GeneralConversionCleaner is located in smoke/smoke/clean/cleaners.py
and is the primary implementation of the GenericCleaner class’
convert_files_tofeaturetimespacegrid method (i.e. contains the primary and
most general process for step two of the high level process, which is con-
verting a group of selected raw data files into a populated standardized 4
dimensional grid). For this process the GeneralConversionCleaner requires
arguments of a smoke.box.Box.Box object which will handle grid assign-
ments, and is explained further in the B.7.1 Box subsection, an exclusive
start time for our standardized grid, an inclusive end time for our standard-
ized grid, a time resolution for our standardized grid, and the list of Geo-
graphicalDataset loadable files which were found using the get_files step.

26

The GeneralConversionCleaner also makes use of the abstract attributes of
time_cruncher, cell_cruncher, expected_feature_array, parser, and
requires_mesh as stated in the B.4.1 subsection regarding the GenericCleaner.
The GeneralConversionCleaner then carries out the conversion of all those
files, into a 4D grid within the object of a
smoke.box.FeatureTimeSpaceGrid.FeatureTimeSpaceGrid, which has the co-
ordinate specifications spatially of the given Box, and temporally of the given
start, stop, and resolution parameters, via the following process:

1. A GeographicalDataset object of data from each of the given raw data
files is loaded using the abstract attribute of parser, so that all data
from the files can be accessed with the standardized wrapper functions

2. The endpoint FeatureTimeSpaceGrid (FTSG) is created using the given
Box to specify the space grid, and the given start, stop and time reso-
lution parameters, to specify the time axis, with one of these 3D space-
time grids being created for every feature in the expected_feature_array
given under the abstract attribute

3. For every feature in the endpoint FTSG the 3D spacetime grid is pop-
ulated via the following process:

(a) Every xarray DataArray within each GeographicalDataset of the
feature is extracted. Then for every single time on every time axis
the lat axis, lon axis, and 2D data along space are extracted from
each of these DataArrays

(b) For every time the 2D data is then flattened and given an assign-
ment in the space grid of the given Box using the Box’s functions,
based on the latitude and longitude axes for that data. This is
where the requires_mesh attribute is utilized as the latitude and
longitude axes are meshed to match the 2D data, if they start as
1D arrays

(c) Then for every unique time in all times gathered in the step (a),
all of the data and corresponding grid assignments that have that
time are grouped

(d) For every one of those unique times and grouped data/assignments
the cell_cruncher attribute is called to crunch down all data and
assignments for a unique time, into a unique set of data and grid
assignments such that there is a single uniquely populated space
grid for each

27

(e) Then using every unique time and crunched down space grid,
a TemporaryTimeSpaceGrid (TTSG) is created and is populated
with all the data, and another unpopulated TTSG is created of
the resulting FTSG’s current feature’s 3D spacetime grid. Using
the attributes of the time_cruncher the TTSG, containing all the
data, is then crunched down to the target TTSG.

(f) Now with a TTSG containing the 3D spacetime grid for the fea-
ture and containing relevant data of that feature from every data
file, the feature’s empty 3D spacetime grid is replaced with the
one from this TTSG, thus populating the endpoint FTSG’s fea-
ture’s 3D spacetime grid

With that all completed for every feature of the FTSG, a fully populated 4
dimensional grid across features, time, and space will have been populated,
and thus can be returned completing the implementation of the highest level
second step. This GeneralConversionCleaner’s process will work for any ar-
bitrary amount of GeographicalDatasets from a single dataset, but will take
an extremely long time if the data given is not sparse. It will still work, but
depending on the assumptions made, this process can be sped up.

B.4.4 ConsistentGridCleaner

The ConsistentGridCleaner is located in smoke/smoke/clean/cleaners.py
and is an extension of the GenericConversionCleaner class. The purpose
of the ConsistentGridCleaner class is to take advantage of the assumption
that the dataset that is being cleaned has a consistent space grid across all
of its raw data files, by using this assumption to speed up the normal Gener-
icConversionCleaner class’ convert_files_tofeaturetimespacegrid process. It
does this by overriding 2 specific steps in the process which are as follows:

1. For step 3.b in the B.4.3 GenericConversionCleaner’s process, the step
is overridden such that in the GenericConversionCleaner’s 2D data
grid assignments, only for the first time in all times is the grid assigned
instead of doing so for every single time. This can be done since all
other data grids will end up getting the same assignments, under the
consistent space grid assumption, and thus saves time as only one of
these grids has to undergo the process. The one grid assignment is
then assigned to every other time, matching the end state of 3.b in the
B.4.3 GenericConversionCleaner’s process.

2. For step 3.d in the B.4.3 GenericConversionCleaner’s process, the step
is overridden such that all data 2D grids in a single time which are to

28

be crunched, are simply crunched across all of their time axes with a
numpy.nanmean before entering any CellCruncher. This can be done
since the assumption of a consistent space grid is made across all 2D
data grids, so crunching across time first will simply mean doing Mean-
CellCruncher’s job in one single array step. This saves time and is
absolutely necessary as normally the CellCruncher has to iterate over
every single repeated cell assignment, and in a consistent grid sys-
tem if there is more than one grid for a time, every single one of those
cells will have a repeated assignment meaning a huge number of steps
are necessary. The single crunched grid is then pumped into the given
CellCruncher, with the first grid of assignments (since all are the same
under the assumption) in a similar fashion to the end of the step for
3.d leaving it in a similar state at the end. It is important to note
that ConsistentGridCleaner’s use of the numpy.nanmean in this step
means that the crunched data will be only valid if the cell_cruncher
desired for this cleaning was a MeanCellCruncher. One can make an-
other ConsistentGridCleaner under a different name, with a different
operation across the time axes replacing numpy.nanmean to properly
get the functionality for another CellCruncher.

Other then these two overrides however, the ConsistentGridCleaner uses
the processes in the GeneralConversionCleaner as described in subsection
B.4.3.

B.4.5 Dataset Specific Implementation of Cleaners

The final implementation of the GenericCleaner class requires the imple-
mentation of both the set of abstract attributes and the
convert_files_tofeaturetimespacegrid method. With the GeneralConversion-
Cleaner, ConsistentGridCleaner, or some additional equivalent class, the
convert_files_tofeaturetimespacegrid method can be implemented, requir-
ing just one more additional extension of those classes to fully implement
the GenericCleaner. The things left to implement, the abstract attributes,
will be specific to a dataset as file names, parsing, and the types of crunching
desired, will entirely be contingent on how that particular dataset’s files are.

When extending the GeneralConversionCleaner, ConsistentGridCleaner,
or some additional equivalent class to get to a full implementation of Gener-
icCleaner, the following attributes must be implemented which are specific
to the particular dataset meant to be cleaned by the cleaner:

29

• parser: the parser to use when loading the dataset’s files into Geo-
graphicalDatasets for the cleaner

• expected_features_array: the array of names for feature DataArrays
contained in each of the resulting GeographicalDatasets from the parser

• file_name_regex: Regular expression which will match the file names
of the files from this dataset

• file_name_datetime_regex: Regular expression to find the datetime
string contained in each of the files’ names for this dataset

• file_name_datetime_fmt: Python datetime strptime format to parse
the datetime string contained in the files’ names

• time_cruncher: TimeCruncher object to use to crunch data overlapping
temporally

• cell_cruncher: CellCruncher object used to crunch data overlapping
spatially

• requires_mesh: True if dataset’s GeographicalDataset has a 1D axis
for latitude and longitude that needs to be meshed to match the size
and shape of 2D data given per time

Currently in the data pipeline the full implementations that are writ-
ten are the FireworkCleaner, BlueSkyCleaner, MODISAODCleaner, and the
MODISFRPCleaner which contain the abstract attributes necessary to clean
the files from the datasets of their namesake. The FireworkCleaner and
BlueSkyCleaner both implement the ConsistentGridCleaner since they con-
tain non-sparse data that occurs always on a consistent spatial grid of lon-
gitudes and latitudes, and the MODISAODCleaner and MODISFRPCleaner
implement the GeneralConversionCleaner since they contain sparse data
and don’t have a consistent spatial grid. Each of these cleaners uses a
cell_cruncher of a MeanCellCruncher and a time_cruncher of a AvgTime-
BinTimeCruncher since any overlapping data does not necessitate more of
that value in that area (requiring a sum), but rather a different measure-
ment in that area (requiring a mean). FireworkCleaner, BlueSkyCleaner,
and MODISFRPCleaner all have requires_mesh set to True since they all
have 1D coordinate axes for latitude and longitude following their parsing,
and MODISAODCleaner has requires_mesh as False since it has a 2D grid
for latitude and a 2D grid for longitude post-parsing. Each uses the parser
from smoke.load.parsers of their namesake and the expected_features_array

30

that result from that parsing process which all are mentioned within B.3.
Finally, the implementation of file_name_regex, file_name_datetime_regex,
and fine_name_datetime_fmt are set to the specifications of the names given
to files for that dataset when downloaded by our download suite, so any
changes there will require changes to these attributes in the cleaners.

B.4.6 Running Cleaning Process

To extract data from raw data files into output FeatureTimeSpaceGrids by
running the cleaners one must use the smoke/smoke/clean/run_cleaners.py
script to run it, after editing the smoke/smoke/clean/run_cleaners_config.yml
or a copy of it at a known path. To run the script using the edited config yaml
file, one must simply call python on the script with the path to the config as
an argument. An example command line call for running this script with a
working directory of smoke/smoke/clean is shown below:

python run_cleaners.py <path to run_cleaners config yaml>

The yaml file contains settings for the output FTSG’s space grid size in
km, the time range as defined by a start and stop time in ISO-8601 (each
day in the time range will have a FTSG generated for it for all datasets set
to run), and a block of settings specific to each dataset. The dataset block
contains 4 attributes common to all blocks of settings for datasets which are
as follows:

1. run: Which tells you whether to run this dataset through the cleaners
or not

2. file_directory: The directory to look in to find this dataset’s raw data
files

3. output_directory: The directory to save out FTSGs to for this dataset

4. grid_time_res_h: The time resolution to use for the daily FTSGs gen-
erated

For firework and bluesky, the two forecast datasets, there are also multi-
ple dataset blocks underneath them with three additional attributes each
dataset block. Each of these dataset blocks defines a set of settings for
one FTSG creation run under the forecast, with multiple per forecast be-
ing possible due to the multiple dataset blocks. There is also an additional
attribute for each forecast called time_we_at_stand_before_grid_h which de-
fines in hours the buffer zone between the start of any FTSG’s day and the

31

time range valid to look for forecasts files within. So for example if there is a
standing time of 1, when creating an FTSG for any of the dataset blocks
below, anything past 1 hour before the FTSG’s start, are files that have
data that can not be used for that FTSG. In the multiple dataset block’s
three additional attributes, two of the attributes are set to define a data
window to look for files within for that dataset’s FTSG run, and are called
data_window_end_n_hours_before_standing and data_window_size_h. These
respectively define the end of the data window for that FTSG run relative
to our aforementioned standing time, and the size of the data window in
hours. Finally the third attribute of file_prefix just allows differentiation in
name for FTSGs of that particular setting FTSG run vs. the other FTSGs
from FTSG runs of other dataset blocks under that same forecast. This was
essentially made as firework and bluesky can have multiple forecast files
which contain forecast data for a single time, so by doing this you can gen-
erate one set of FTSGs for the closest forecast to the FTSG, and another for
the 2nd closest to the FTSG, and so on. At this moment, firework has 4 since
it can go up to 72 hours into the future in recent geotiffs meaning up to 4
forecasts for a time, and bluesky has 2 since it can go up to 50 hours in the
future meaning up to 2 forecasts for a time.

The actual run_cleaners.py script, when called, creates an FTSG for ev-
ery day in the time range, loading data from the file directory given, and
saving our FTSGs to the output directory given, depending on all of these
attributes set in the given yaml file for each dataset. It is set currently
to clean firework (and the 3 other closest forecasts), bluesky (and its other
closest forecast), modis FRP, and modis AOD, but additional calls to other
additional cleaners can be added in a similar fashion. It will only attempt
to clean and produce FTSGs for each of these datasets, if they are set to run
in the config file. Basically, the process for this script is that it generates a
smoke.clean.cleaners.BCBox of the given km resolution and a date range for
every day in the time range given. It will then for each of the datasets set
to run, create an FTSG of every day in the time range for that dataset. If no
files are given on a particular day, the FTSG will still be made, but it will be
entirely filled with nan values.

B.5 NOAA Processing
B.5.1 Exploratory data analysis

Below is a visualization of data from NOAA dataset. The underlying image
is a raster of British Columbia, layered with a polygon shapefile of smoke

32

plume drawn.

From a time series analysis of the number of smoke plumes drawn in a
year, we found that smoke plumes are rarely drawn between the hours of
10:00 and 19:00 UTC (or 3:00 to 12:00 PST). We speculated that perhaps
the smoke plume analysts do not work 24/7. However, after corresponding
with the NOAA staff, we realized that smoke plumes are not drawn during
these times primarily because of low visibility. Hence, instead of labelling
each cell as 0 (no smoke) and 1 (smoke), we decided to introduce a third label
(NaN) to indicate to the model that no data was collected but that does not
necessarily mean there was no smoke.

33

Additionally, the smoke plumes are drawn at irregular time intervals,
and sometimes erroneous start and end times are recorded (where end times
come before start time). We decided to floor the time per hour and combine
smoke plumes at that hour.

In order to extract binary features that indicate whether a cell in a grid of
BC has smoke or not, we are using a geohashing approach illustrated below:

Imagine the world is divided into a grid with 32 cells. The first character
in a geohash identifies the initial location as one of the 32 cells. This cell will
also contain 32 cells, and each one of these will contain 32 cells (and so on
repeatedly). Adding characters to the geohash sub-divides a cell, effectively
zooming in to a more detailed area.

The precision factor determines the size of the cell. For instance, a preci-
sion factor of one creates a cell 5,000km high and 5,000km wide, a precision
factor of six creates a cell 0.61km high and 1.22km wide, and a precision
factor of nine creates a cell 4.77m high and 4.77m wide (cells are not always
square).

Geohashing is used to turn each cell in the BC grid into a unique geohash

34

that can be compared with the smoke plume polygon to indicate whether
that cell has smoke or not.

B.5.2 Geohashparser

Class Geohashparser will take parameters 1) source polygon shapefile di-
rectory, 2) individual shapefile, 3) results filepath, and 4) hours of day to
exclude, and output a matrix of BC with cells assigned 1 for smoke, 0 for no
smoke, and -1 during the hours in which smoke plumes are rarely drawn.

Please note that the bounding box of BC as well as geohash precision
were set as static variables.

We check the polygon shapefiles to identify if the shapes are within the
bounding box coordinates of BC, and compute geohash tiles from polygons
that are within the box.

B.5.3 BoxMapper

In order to integrate features from different datasets, Class Amalgamator
was created. An arbitrary 2D grid of BC is used ubiquitously by all datasets
to map features into the same BC grid. Hence, Class BoxMapper was created
to integrate the smoke plume feature into this ubiquitous BC box for each
hour of each day from smoke plume data in 2018-2019.

An instance of the ubiquitous BC box (250x250) is created for each hour
of each day, and if the hour falls under the “hours to exclude”, then the box
is filled with -1’s. If the hour falls outside of the “hours to exclude”, then the
box is filled with 0s to begin with. We then take the geohash output (lat/lon
coordinates) from the Geohashparser and map it to the common BC box. A
geohash cell that resides within a smoke plume polygon are assigned a value
of 1, then the geohash cell coordinates are compared with the coordinates in
the box to be mapped to the corresponding cell in the box.

B.6 BC MoE PM2.5 Label Processing

B.7 Grid Representation
B.7.1 Box

B.7.2 BCBox

The BCBox is located in smoke/smoke/clean/cleaners.py and is a type of
Box (from smoke/smoke/box/Box.py) which has a hard coded consistent set
of input parameters for top left corner lat and lon, bottom left corner lat

35

and lon, and grid side distance in km. It still requires an argument of grid
resolution however, which allows the changing of grid resolution during the
cleaner process. In order to change the location of the space grid used to
create the FeatureTimeSpaceGrids during the run_cleaner.py process, one
must change the coordinates and distance settings passed into Box within
this BCBox. This was created so that all grids created during the cleaning
process would have the same space grid, and thus during the amalgamating
step the end result tensors would be different feature measurements stacked
on top of one another in a similar space grid.

B.7.3 FeatureTimeSpaceGrid

The FeatureTimeSpaceGrid (FTSG) class is a data storage object which
extends the 2D theoretical grid representation of the Box from the
smoke/smoke/box/Box.py file, into a physical populatable 4D grid represen-
tation within this object. This object does this by containing a 4D numpy
grid of the axes in order of feature, time, row and column. The feature axis
size is determined by the feature array given on creation to the FTSG and
the time axis size is determined by the given exclusive start, inclusive end,
and resolution parameters. These allow the FTSG on creation to create a
time axis given the specifications, and creates a 4D grid with its 2nd dimen-
sion of time being the same size as that time axis. Finally the last 2 axes
of row and column are determined by the given smoke.box.Box.Box object
given to the FTSG, as the Box object is a theoretical grid, so the FTSG sim-
ply creates a 2D space grid which is of its specifications. The FTSG also
has functions to save itself out in its current state into a tar.gz file contain-
ing all necessary data to rebuild that FTSG, and contains a function called
load_featuretimespacegrid to load one of these saved tar.gz FTSGs back into
a FTSG object in python. This is necessary as the cleaners must save out
FTSGs and the amalgamator must load those FTSGs to pull slices from,
in order to create the final pytorch tensors. The FTSG class is located in
smoke/smoke/box/FeatureTimeSpaceGrid.py

B.7.4 TemporaryTimeSpaceGrid

The TemporaryTimeSpaceGrid (TTSG) is essentially a temporary object
which extends the 2D theoretical grid representation of a smoke.box.Box.Box
into a 3D physical grid with the addition of a time axis. This class is lo-
cated in smoke/smoke/box/FeatureTimeSpaceGrid.py and is basically purely
for use in the TimeCruncher tool in order to efficiently pass a bunch of 2D
space grids along a third axis of an arbitrary sized, arbitrary ordered time

36

axis into the TimeCruncher and to store post time crunched data efficiently.
Both of these are made a ton easier by having a poputable 3D grid of Box
specifications and a flexible time axis, which is why the TTSG class was
created.

B.8 Amalgamator
B.8.1 Overview and Process

The Amalgamator is the object that carries out the pytorch tensor cre-
ation, creating tensors from 2D grid space slices drawn from each feature in
saved out Firework, Bluesky, MODIS AOD, and MODIS FRP FeatureTimeS-
paceGrids (FTSG) and from saved out NOAA .npy files post NOAA branch
processing. The Amalgamator is located in
smoke/smoke/amalgamate/Amalgamator.py. Upon creation the Amalgam-
ator requires arguments for the multiple directories containing the PM2.5
labels, the Firework, Bluesky, MODIS AOD, and MODIS FRP saved out
FTSGs following the processing of run_cleaners.py, and the NOAA grids fol-
lowing processing of the NOAA branch. If any of these datasets will not be
included in the finalized tensor, the arguments can be just left as None. The
Amalgamator contains methods named firework, bluesky, modisfrp, mod-
isaod, and noaa which are each meant to load the 2D space grids of all fea-
tures within the datasets of their namesake, from the directories given on
Amalgamator creation, for a given time called label_time. This label_time
is meant to be the time of the ground truth label that the result tensor is
going to try and predict, so each of these methods contains the time logic for
finding which grid slice to use to try and predict that specific time. Each of
these FTSG methods has a process based on the output FTSG of the current
run_cleaners.py process explained in B.4.6, so they are all reliant on FTSGs
being saved out as whole days as they are in the process, but can handle
any of the flexible parameters given in the run_cleaners_config such as a
changed resolution in time or space.

The methods of forecasts firework and bluesky simply grab the direct cor-
responding time of label_time from their respective FTSGs, as there is no
necessary time logic to simulate real time due to the FTSGs being of a fore-
cast which is a measurement representative of the future. For example if
we were standing at 0600 hours and wanted to predict what would happen
at 1200 hours with a forecast, we would just use whatever the forecast is
forecasting at 1200 hours. This is also largely due to the time logic offset
for simulating real time for the forecasts, being taken care of during the

37

run_cleaners.py script, as the buffer time and data window for real life daily
predicting is set by those settings in the cleaning process. The physical mea-
surements of modisfrp, modisaod, and noaa are all represented in the FTSGs
and saved out .npy files at the exact time they were measured, so in order
to simulate a real time prediction some additional time logic is required.
For example if we were standing at 0600 hours and wanted to predict what
would happen at 1200 hours with a forecast, we would need to use physical
measurements sometime before 0600 hours as we don’t have physical mea-
surements in the future. At the moment all three methods have just logic
similar to the forecasts of grabbing the physical measurements at the given
label_time for simplicity for the proof of concept model. However if one were
to simulate real time, and try and train the model to do real time predictions
one would have to alter the method calls. Modisfrp and modisaod both con-
tain a optional parameter of simulate_real_time which can be flipped to True
to have them simulate real_time physical measurement difficulty. They do
this by, once flipped, using the setting of daily release time for either dataset,
and instead of grabbing directly the corresponding label_time, grabbing the
closest previous release time of physical measurements to that label_time.
Noaa does not have a simulate real time option, so that would have to be
written for it once the model gets to that stage.

The actual tensor creation using all of these methods takes place in the
method make_pytorch_tensor which, given a label_time, will generate a pre-
diction tensor to try and predict the label at that given label_time. Alongside
the time to create a prediction tensor, it takes in an argument of a dataset
list which is a list of string containing any combination of the strings “fire-
work_closest”, “firework_2ndclosest”, “firework_3rdclosest”,
“firework_4thclosest”, “bluesky_closest”, “bluesky_2ndclosest”, “modisaod”,
“modisfrp”, and “noaa”. These strings all correspond to a single possible
FTSG creation dataset set from run_cleaners.py. When the method is run
for a given label_time first the Amalgamtor checks to see if there is a ground
truth label of label_time existent in the PM2.5 labels folder using the logic
in the method check_pm25_PST_file_exists. It will then iterate through the
dataset list drawing a 2D space grid for each dataset contained within it,
using the methods previously mentioned, and checking to see that valid pre-
diction data is given. If valid prediction data from any of the datasets is not
available for that time, an error is raised to prevent an invalid prediction
tensor from being made. If all 2D space grids of data returned are good,
all 2D space grids are stacked together into a tensor then saved out under
a unique name to the particular label_time. This resulting tensor will be 3

38

dimensional, with a first dimension of feature measurement, and following
dimensions of 2D space. The resulting pytorch tensor will be a prediction
tensor containing data relevant to predict a label of similar time, using the
CNN. It is important to note that the Amalgamator does not check if the grid
km resolution is the correct size or not, so all directories containing FTSGs
and .npy files of saved out prediction data must be in the same resolution of
the same space grid (easiest if all are generated using the same BCBox object
as that will have consistent space grid coordinates and grid resolution).

B.8.2 Running the Amalgamator

To run the amalgamator using already made code the script
run_amalgamator.py in smoke/smoke/amalgamate is available to use.
run_amalgamator.py when run will generate pytorch tensors containing cer-
tain datasets for a time range, both as specified in a config yaml file, saving
the tensors out into a given output directory path. To run the file first
one must edit the config yaml to desired specifications which can be the
smoke/smoke/amalgamate/run_amalgamator_config.yml file or an equivalent
copy in some other known place which contains the same attributes. To run
the script using the edited config yaml file, one must simply call python on
the script with the path to the config as the first argument and the path
to the desired tensor output directory as the second argument. An exam-
ple command line call for running this script with a working directory of
smoke/smoke/amalgamate is shown below:

python run_amalgamator.py <path to run_amalgamator config file>
<path to output directory for created tensors>

As the Amalgamator itself is based only on datasets run_cleaners.py is
hard-coded to clean, the run_amalgamator.py script and accompanying con-
fig yaml also contain settings and processes for adding only those datasets
which are the 4 closest firework forecasts, 2 closest bluesky forecasts, modis
FRP, modis AOD, and noaa. The config yaml contains relatively self ex-
planatory settings. The datetime start, stop, and resolution parameters set
the times in UTC which the run_amalgamator script will attempt to cre-
ate tensors for. The dataset directories are simply the directories that one
has saved their FTSGs or npy grids into during the cleaning process, and
where the time labelled PM2.5 ground truth labels are. And the rest of the
attributes are simply the names of the datasets that can be included in the
tensor, and should be set to True or False depending on if the dataset is to
be included in the generated tensors or not.

39

Upon running the script, the settings for datetime start, stop, and time
resolution, will be formed into an array of those settings. An Amalgamator
object will be created using the dataset directory settings loaded from the
config. Then for every single time in that time array, the amalgamator will
attempt to generate a pytorch tensor of prediction data, which is meant to
predict the label at each time given. As stated before, the Amalgamator will
return an error when the labels for that UTC time do not exist, or if any of
the datasets being added have an invalid data grid of prediction data for that
time. In any case of this, the tensor creation for that particular time will be
skipped, with the log stating which dataset/label caused the skip. The result
then after running the script should be as many prediction tensors as were
valid in the time range specified, saved out into the given output directory.

B.9 Validation
The pipeline has been validated by the testing suite located in the

smoke/tests directory with amalgamate, box, clean, load, and split testing
the components kept in the folders of their namesake, located in the
smoke/smoke directory. The tests in amalgamate, box, load, split and the
test_CellCruncher.py and test_TimeCruncher.py scripts can all be run to
confirm the function of their respective components, which will be useful
for testing core functionality upon any changes to any of the classes.

The one test that is not as straightforward is the manual visual testing lo-
cated in smoke/tests/clean/test_cleaners_manually.py which creates anima-
tions based on a set of saved out FTSGs and the initial data that should be
going into it post running of a cleaner. Each animation will contain vari-
ous plots of all data files that should be going into a single FTSG and the
actual resulting grid of the FTSG across all times in the FTSG. To use this
animation to diagnose the cleaners, one must simply check that the informa-
tion being displayed that exists in the saved out FTSG makes sense visually
with the initial data that is being displayed beside it.

To run the script to generate these animations one must simply edit the
config.yml file in smoke/tests/clean or a copy of the config file in some known
location, to specify the output directory for animations, the location directory
of the post cleaning FTSGs to test, the directory containing raw data files
that went into that FTSG, the data window specified to search for raw data
files for a particular FTSG during the cleaning process, and which cleaner
is being tested. For now the animations can only be generated for Firework,

40

Bluesky, MODIS AOD, and MODIS FRP as those are hardcoded but one
can edit the script and config to add additional tests for additional cleaners.
Finally one would simply call from the command line the script with an
argument of the config.yml path.

B.10 Recommendations
If one were to expand the model training to additional datasets and wanted

to use pipeline infrastructure to add this type of data into the tensors, there
are three places which one would definitely have to edit in the core of the
pipeline. First, one would have to add an additional parser, which contains
the process for loading the dataset’s file format into an xarray Dataset with
specifications for the creation of a GeographicalDataset. Second, one would
have to add an additional full implementation cleaner, which can extend ei-
ther the GeneralConversionCleaner or ConsistentGridCleaner or additional
cleaner depending on the data in the dataset. This full implementation
cleaner would have to implement the various abstract attributes which will
be specific to the additional dataset. Finally one would have to add an addi-
tional function to the Amalgamator to load space grids for that dataset, and
a call to that function in make_pytorch_tensor. This would fully implement
the dataset into the core functionality of the pipeline.

As per the running of the pipeline accounting for this new dataset in either
run_cleaners.py or run_amalgamator.py it will be a decent bit harder to add
the functionality. One can simply follow the template of other datasets run
through those scripts to add the consideration of the additional dataset to
the code. However it is much more recommended, assuming one has a large
chunk of time, to just remake the run_cleaners.py script, Amalgamator, and
run_amalgamator.py script to deal with an arbitrary number of datasets and
to not be tied to hard-coded non generalized processes. One while doing
this, can use the current code functionality of each as a template for what
processes need to be carried out for each dataset, and can then based on that
example create a generalized way of doing so. Unfortunately, due to time
limitations, this was not something we could implement in the pipeline, so
it is as of right now tied to the specific datasets and functionality specifically
that we required.

41

	Abstract
	Introduction
	Project Motivation
	Project Strategy
	Data Science for Social Good

	Materials and Methods
	Datasets

	CNN Architecture
	Sparsity Invariant CNNs
	Multitask Learning

	Results and Discussion
	Conclusion
	Appendices
	Data-Download-Suite
	Overview
	smoke/utils package
	smoke/ package

	Data-Processing-Pipeline
	Overview
	Pre-cleaning steps
	Parsing Step
	Cleaning Step
	NOAA Processing
	BC MoE PM2.5 Label Processing
	Grid Representation
	Amalgamator
	Validation
	Recommendations

