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1. Introduction  
 

1.1 What is Data Science for Social Good? 
The Data Science for Social Good program, administered through the 

University of British Columbia Data Science Institute, is a 14 week fellowship 
program aimed at developing solutions to problems with social impact while providing 
data science training to UBC graduate and undergraduate students. UBC students 
partner with organizations in the community to work on data science projects that 
contribute to the public good. To greatly enrich the research experience, the program 
aims to recruit fellows from a diversity of fields. This particular project partners with 
Metro Vancouver to determine how biodiversity data can be made easily accessible 
to regional planners to assist in making land-use decisions.  

 

1.2 Defining Biodiversity 
Biodiversity is defined to be all living things on earth and includes the 

environmental context in which they live. Biodiversity encompasses multiple 
scales, from the molecular level all the way to entire ecosystems; it not only 
encompasses differences between and within species but also differences 
between habitats such as soil composition, temperature, elevation and tree 
cover.  

 

1.3 Ecosystem Services and Biodiversity as a Social Good 
Broadly defined, ecosystem services are the benefits that humanity 

receives from properly functioning ecosystems (Fig. 1). While some of these 
services such as the provision of water, wood, natural gas are quite apparent, 
others such as the regulation of air composition and the disposal of waste 
products are not obvious (Bouma, & Van Beukering, 2015; Costanza et al., 1997). 
Humans rely on microorganisms to generate healthy soils for plants, insects to 
pollinate food crops and wetlands to purify water (Bouma, & Van Beukering, 
2015; Costanza et al., 1997, WWF, 2018). Almost all pinnacles of human 
development and progress have relied on the extraction and use of natural 
resources. From the diversity of medicines generated by thousands of plant 
species to mental and physical health benefits derived from inhabiting green 
spaces, the preservation of human wellbeing requires a diversity of species that 
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remain healthy and intact (WWF, 2018). It is therefore of vital importance to 
recognize the economic as well as spiritual and aesthetic value that ecosystems 
provide and do everything possible to protect it from ongoing threats. In a 
conservative attempt to put a value on their contribution to the totality of the 
human economy, Costanza et al. (1997) estimated these combined ecosystem 
services to be over 33 trillion USD annually (in 1994 dollars) and made it clear that 
as ecosystems are degraded with time, the services they provide become far 
scarcer and more valuable. 

Biodiversity is the foundation of any ecosystem, and is thus a cornerstone 
of all ecosystem services (Habib, 2016; Ninan, 2009). Ecosystems are only as 
strong as the species and habitats that compose them; for instance, loss of soil 
microbes interferes with an ecosystem’s ability to replenish nutrients and 
regulate the chemical composition of the air. Loss of pollinators can prevent 
plants from flourishing which in turn has downstream impacts on the species 
that rely on these plants. Documenting biodiversity thus becomes imperative for 
ensuring the sustainability of an ecosystem and the services it provides. 
 

 
Figure 1. Ecosystem services supported by biodiversity. 
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1.4 Threats to Biodiversity  
There are numerous threats to sustaining healthy biodiversity, chiefly 

among them are unsustainable agricultural practices, overuse of species (ie 
overfishing) and habitat loss through development decisions (Isbell, 2010; 
Martinez-Ramos, Ortiz-Rodriguez, Pinero, Dirzo, & Sarukhan, 2016; WWF, 2018). 
All of these pressures stem from unsustainable levels of human consumption.  
The World Wildlife Foundation’s Living Planet Index (LPI) that tracks vertebrate 
species populations over time has shown a 60% species decline since 1970, a 
trend that seems likely to continue (Fig. 2). The removal of sensitive ecosystems 
has a multitude of negative impacts, including habitat loss, reduced rain 
coverage, and increased soil erosion, all of which threaten biodiversity in the 
regions around human habitation. 
 

 
Figure 2. The global Living Planet Index shows a 60% decline between 1970 and 2014. 

The white line shows the index values and the shaded areas represent the 95% 
confidence limits surrounding the trend (WWF, 2018) 

 
 
 

1.5 Barriers to Biodiversity Integration in Land Use Decisions 
Since habitat loss due to land use decisions is a key threat to maintaining 

biodiversity, it is of critical importance that urban and regional planners have 
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access to up-to-date, easily accessible data on biodiversity. At present in Metro 
Vancouver, easy access to biodiversity data has been an ongoing challenge. 
Planners must consult multiple websites on numerous platforms to get the 
information they need. Some biodiversity tools were built for the national and 
international scale leaving regional and municipal planners with data at too 
coarse a scale for local decision making. Protecting biodiversity in a land use 
context is incredibly complex and requires multiple components that no single 
source provides. A planner needs access to not only species occurrence data but 
also ecosystem classification information and endangered species lists at 
International, National and Provincial levels. Due to these various data access 
barriers, this leaves the inclusion of biodiversity in decision making to be 
tenuous at best. 
 

1.6 Citizen Science  
Citizen Science refers to the participation of non-expert members of the 

public in the process of scientific inquiry. In the field of biodiversity, data 
collection is the chief contribution of citizen scientists. By documenting 
observations of organisms with applications such as iNaturalist and e-Bird and 
having their reports later verified by experts, the public can produce a volume of 
data that would otherwise be virtually impossible to obtain. While there will 
always be concerns about the validity of this methodology, citizen science 
initiatives provide a vast and rich source of data with greater benefits than 
drawbacks.  
 

1.7 Project Aims  
This project constitutes the first attempt to survey the state of 

biodiversity data available for the entire Metro Vancouver region. The five main 
goals of the project include: 1) Discover the types of biodiversity data that are 
available (ie species occurrence, habit information), 2) Assess what data should 
be included in a map viewer, 3) Assess the source and quality of the data, and 4) 
Explore what kinds of questions that could be answered with the web viewer, 5) 
Identify data gaps by establishing a baseline inventory of Metro Vancouver 
species. 
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2. Data Sources & Description  
A central goal of the project was to gather biodiversity data from a 

variety of sources. The data descriptions below detail the various sources of data 
that were integrated together. All data sources are publicly accessible. 

 

2.1 Global Biodiversity Information Facility 
The Global Biodiversity Information Facility (GBIF) is an international web 

database that houses raw species occurrence data. GBIF integrates the data 
from a multitude of sources such as citizen science projects, natural history 
collections and academic research institutions all while making them accessible 
to the public. It is a valuable resource that provides species occurrence records 
in a format that is easy to analyze and manipulate. As of 2019, there are 235 data 
sources for Metro Vancouver with about 3 million species records spanning from 
1700 to the present day. Each species record provides a variety of details such as 
the institutional source of the data, latitude and longitude, year the organism 
was observed as well as full taxonomic information. Though GBIF integrates data 
from multiple biodiversity projects, for Metro Vancouver, 95% of the data 
derives from citizen science projects such as eBIRD and iNaturalist with the 
remaining 5% originating from academic institutions such as the Royal BC 
Museum and the UBC Herbarium. Though animals and more specifically birds 
compose the greatest number of records, plants actually have a greater number 
of unique species observations, comprising a little over 50% of the total unique 
species (​Table 1)​. 
 

Table 1. ​Comparison of Kingdom Observation Counts vs. Unique Species

 
 

The GBIF data constitutes ~ 10,500 unique species observed in ~30,000 
unique localities across 319 years for the Metro Vancouver region. Though the 
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data spans over 300 years, 75% of the species have been recorded within the 
last 10 years and 89% of the data has been recorded in the last 20 ​(Figure 3).  
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Figure 3. The rise of GBIF records over the 20 year period between 1998-2018 

 

2.1.1 GBIF Data Biases 
An exploration of the GBIF data reveals that 94% of the records come 

from eBIRD, a citizen science platform for collecting bird species observations 
(Table 2)​. This creates a distinct bias in the data and demonstrates how most 
species will be either underrepresented or not present in the data at all. This 
implicit bias towards birds has a number of consequences on subsequent data 
analyses and their interpretations.  

First, the bias towards birds means that for some of the most diverse 
organismal groups such as microorganisms and fungi there is almost no 
information. This places a limitation on getting the full scope of biodiversity as it 
operates from the micro to the macroscopic level. Secondly, the SEI species 
predictions, ​(see section 5.5.1)​ are strongest for birds since they are sampled 
more heavily. SEI predictions cannot be made for the large majority of species 
since they are either not observed in any SEI polygon or have been observed in 
too few polygons to make reliable predictions. Thirdly, the same issue also arises 
for Species Distribution Modelling ​(see section 5.5.2) ​as the algorithms required 
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to do such modelling require at least 30-90 observations. This precludes almost 
all fungi and a great number of plants from being analyzed.  
 

Table 2​. Top 10 GBIF Data Contributors 

 
 

2.2 International Union for Conservation of Nature  
The International Union for Conservation of Nature (IUCN) is an 

organization tasked with monitoring species at risk on a global scale as well as 
supporting public and private institutions in conservation efforts. The IUCN 
conducts assessments of species and determines in which of nine classifications 
it falls. A species’ status can fall anywhere between Least Concern to Critically 
Endangered with each level of classification increasing the organism’s risk of 
extinction. Currently there are 79 species in the Metro Vancouver region that are 
on the IUCN Red List with 7 considered to be Critically Endangered, 9 
Endangered, 24 Vulnerable and 39 Near Threatened. 
 

2.3 BC Species and Ecosystem Explorer 
In addition to IUCN, the government of British Columbia also monitors 

species at risk within its provincial borders. The BC Species and Ecosystem 
Explorer openly provides raw data on species in BC that have been Red, Blue or 
Yellow listed, with Red and Blue being the most sensitive or vulnerable 
categories and the Yellow list including species that are considered to be 
common and relatively secure. There are currently 120 red listed species in Metro 
Van, along with 180 Blue listed.  
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2.4 Sensitive Ecosystem Inventory 
The Sensitive Ecosystem Inventory (SEI) is a spatial dataset created by 

Metro Vancouver between 2010 and 2012 and then subsequently updated in 
2014. (Metro Vancouver, 2014). It classifies regions within Metro Vancouver into 
12 broad ecosystem categories such as Old forests (trees > 200 years old), 
Wetlands or Woodlands. These ecosystems have been identified as at-risk, 
fragile or are important habitats for biodiversity. In addition to Sensitive 
Ecosystems, the dataset also maps Modified Ecosystems; though they have been 
younger or more disturbed by human activity, Modified Ecosystems are natural 
ecosystems that provide important habitat for a variety of species.  
 

2.5 International Taxonomic Information System 
The International Taxonomic Information System (ITIS) provides 

standardized taxonomy information for species identification. This dataset was 
integrated to obtain the common names of species since this information is not 
provided by GBIF. 
 

2.6 Data BC  
The provincial government under the Ministry of Forests, Lands, Natural 

Resource Operations and Rural Development published 3 spatial datasets that 
were used to inform the degree of proximity a specific SEI polygon is to water 
(fresh and saltwater). The three spatial datasets utilized were the Freshwater 
Atlas for Rivers, Freshwater Atlas for Lakes and the NTS BC Coastline Polygons. 
Each dataset was used when making species predictions in SEI polygons. 
 

2.7 WorldClim Version2 
WorldClim is a dataset of 19 spatially interpolated bioclimatic variables 

(i.e., temperature, precipitation) obtained from weather stations between 1970 
and 2000 at a resolution of ~ ​1 km​2​. The climate data were used as 
environmental predictors in species distribution models.  
 

2.8 Elevation-API 
Elevation-API is a product that offers a coarse-resolution (5km) free 

version of their API for retrieving altitude information. This API was used to 
associate each SEI with an elevation by retrieving the elevation at its centroid. 
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2.9 Canada Digital Surface Model 
The Canada Digital Surface Model (CDSM) is a publically-available .75 

second resolution altimetry map of Canada’s land surface created by Natural 
Resources Canada. The elevation data was retrieved in .tif format from the 
coordinates that corresponded to Metro Vancouver to use with species 
distribution modelling (NRC, 2015).  
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3. Gap Analysis 
An ongoing interest for project partners was to identify the gaps in the 

data by finding the species or groups that are poorly represented or are not 
observed at all when there is an expectation that they would be. Identifying 
data gaps would aid in potentially harnessing citizen science projects to target 
the species that are the most data poor.  
 

3.1 Gap Analysis Challenges 
Identifying the species or higher level taxon groups that are poorly 

represented is not a straightforward task. For example, a species having few 
observations in the data could mean that it is poorly sampled despite being 
common in the landscape, or the number of observations could reflect the truth, 
that the species is in fact rare in nature. Without manual literature searches of 
every poorly represented species, the answer to this question is impossible to 
determine from observing the raw data alone. 

Another significant challenge is identifying species that are not in the 
GBIF records but are expected to be in Metro Vancouver based on prior 
knowledge of the region. Identifying a data source representing prior knowledge 
of the region in a format that lends itself to analytics tools proved to be only 
partially fruitful. 

The E-Fauna and E-Flora websites have endeavored to document the 
biodiversity of BC; however, these platforms were not specific to the Metro 
Vancouver region and did not contain species lists in a format that lends itself 
easily to high-throughput data analysis (e.g., PDFs).  

The BC Yellow list is in an accessible format and it was hoped that it 
would constitute those species that are common or relatively secure in the 
region, encompassing every local species that is not on the BC Red or Blue lists. 
However, the BC list is a targeted list and is not meant to be an exhaustive for 
the region. The BC Yellow list does include common species that can expect to 
be found in Metro Van but it would not include all species you’d expect to find, 
for instance, the list is only several thousand entries long despite ranging across 
BC, whereas GBIF alone contains over ten-thousand unique species for Metro 
Vancouver. 

In short, a comprehensive database of Metro Van species in a useable 
format does not currently exist. A great deal of time and resources would need 
to be spent to create a baseline database using the existing platforms. See 
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section 6.3.3 on future opportunities for exploring species tagged as Metro Van 
on the BC List. 

 
 

3.2 Data Poor Taxon Groups: Plants, Fungi, Microorganisms 
Even though it is not clear what specific species are the most poorly 

represented due to lack of background knowledge, it is abundantly clear that 
plants as a group are undersampled as a whole; plants compose only 1.5% of the 
observation records on GBIF for the region of interest. Another indicator of 
undersampling is while the GBIF records are rising overall, they generally have 
not risen for plants over time. Non-vascular plants like mosses compose very 
little of the plant data with most of the plant data coming from vascular plants 
like trees or flowering plants. Fungi compose an even smaller share of the data at 
less than half of a percent and most of the fungi data comes from only two 
phyla. Microorganism data are the poorest still, including bacteria and protist 
groups that collectively provide about 1000 observations. Any future citizen 
science or bioblitz efforts would do well to purposely sample from these high 
level taxon groups.  

 

4. Methodology 

4.1 Software Development 
The majority of code was written in Python and JavaScript. In addition to 

those languages, the time-series plot was coded in R and communicates with 
the otherwise separate python map-viewer through a URL. 
 

4.2 Data Curation and Reduction 
In order to make it useful, all data sources needed to be aggregated 

together. Since different sources contained data on multiple levels, several data 
structures were created, each containing all pertinent data from a given level. 
The two principles levels in question for constructing the map viewer and 
summary plots were observations (GBIF, administrative boundaries) and species 
(GBIF, ITIS common names, IUCN Red List, BCSEE, custom lists; see​ Figure 4​). 
Aside from these two organism data levels, there were three levels of 
environment data: SEI polygons (SEI, BC Freshwater Atlas, NTS BC Coastline 
Polygons, PCIC, Elevation-API), municipalities (administrative boundaries only), 
and raster information (Canadian Digital Surface Model, WorldClim, SEI). 
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4.2.1 Organism Data Structures 
The foundational dataset was raw species occurrence data extracted 

from GBIF for Metro Vancouver with all species-specific variables (i.e., variables 
that described the species observed, not features of the observation itself) 
stripped away. This left only the identifying species name itself, the location in 
the form of latitude and longitude, and the dataset from which the observation 
came (year information was discarded, although a version with temporal 
information was retained for use with the time-series plot; see section 3.2.3 
below). While the municipality in which an observation is located is redundant 
with location, a numeric variable was added for municipality (each number 
representing a different administrative unit) for the sake of simplicity of filtering 
the data based on this variable. 

The species-specific data frame was created by reducing the raw data 
from GBIF to a single observation per unique species and removing all 
observation-specific variables, leaving only the full taxonomy (species, genus, 
family, order, class, phyla, and kingdom). To add to this, the number of raw data 
observations for each species was added as the column ‘freq’. Following this, the 
species names were merged with the ITIS common name variable, the IUCN Red 
List, and the BCSEE (BC endangered status, endemic status, and breeding bird 
status). Lastly, the multi-level variables (e.g., IUCN has several possible 
designations and is thus not an all-or-nothing status) were transformed into 
binary variables. This was done for ease of use by categorizing all species with a 
particular status together (e.g., group together all species that are either 
designated as Red List or Blue List by the BC Ministry of the Environment), these 
simple classifications could be used to filter the data in the time-series plot, and 
the binarized IUCN status in particular was used in the map-viewer to highlight 
clusters of observations containing IUCN status species as well as taxons 
containing such species in the accompanying hierarchical tree. 
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Figure 4. Combined organism data structure example. a) the observation dataframe; b) 

the species dataframe. 
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4.2.2 Environment Data Structures 
The shapefiles containing SEI polygons were extended by four additional 

data sources. For each polygon, a centroid was calculated and thus the centroid 
was used in conjunction with the Elevation-API to determine the elevation at 
that particular point; this elevation was assigned to the polygon as a whole. 
Shapefiles corresponding to rivers, lakes, and the coastline were taken from the 
Freshwater Atlas and the NTS Coastline project; the distance from each polygon 
to each source of freshwater (river or lake) and salt water (coast) was calculated. 
Finally, each polygon was given the average temperature and rainfall variables 
from the closest station in the PCIC dataset. In the event that the closest station 
did not contain both variables, the next closest station with this data available 
was chosen. 

The municipality shapefiles were used only to filter observation data and 
were thus unaltered with one exception. In the shapefiles of administrative 
boundaries, the western contiguous regions of Electoral Area A, the land north 
of North Vancouver and West Vancouver, the University Endowment Lands, and 
the Georgia Straight are not distinguished. In order to facilitate the examination 
of each of these areas separate from one another, the shapefile was altered such 
that each is treated as its own administrative unit. 

Uniquely, because they were used exclusively with species distribution 
modelling (SDM) which does not require them to be combined, the raster files 
used in this project were not combined with one another, but were stored 
separately. The elevation data rasters obtained from the CDSM were retrieved in 
eight separate TIFF files; these rasters were combined and saved as a single file. 
 

4.2.3 Collapsing Redundant Observations 
Certain coordinate points within Metro Vancouver were associated with 

over one-hundred separate observations, possibly due to citizen-scientists 
reporting their sightings to the nearest landmark as opposed to using precise 
coordinates (e.g., sightings reported in different parts of the same park may each 
be recorded simply as being in the park, in which case they will be given the 
exact same coordinates). In early prototypes, our team found it cumbersome to 
use the map viewer as such landmarks and common reference points often 
contained enough separate observations to make themselves unwieldy, and 
many of the observations were of the same species.  

Since such information was redundant, the data was collapsed across 
species and location, removing ‘duplicate’ data points that reported the same 
organism at the same location as another observation. This new dataset 
contained far fewer data points (approximately one sixth the size), indicating 
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that the majority of the original dataset was indeed redundant. All data collapse 
was performed in R. However, since the time-series plot relies on the ‘year’ 
variable and the spatial component is not a concern, a version of the 
non-collapsed data with ‘year’ information included was retained to be used 
with this plot. 

During this collapse, the ​‘month’​ variable was transformed into four 
binary season variables: ​‘winter’, ‘spring’, ‘summer’,​ and ​‘fall’​ to record in which 
season a given observation took place.. This allowed preservation of the 
seasonality of the data when collapsing across time, when multiple observations 
of the same species in the same location were collapsed, the new entry was 
given for each season variable equal to ‘1’ if at least one constituent observation 
occurred in that season and a ‘0’ otherwise. While this seasonality was not used 
in the final product, it is still included in the data if there is a desire to filter 
based on season in the future. 
 

4.2.4 Removal of Observations Outside of Metro Vancouver 
Because the GBIF spatial selection tool used when retrieving data was 

manual, a polygon was drawn that superseded the borders of Metro Vancouver 
in order to ensure that no Metro Vancouver observations were missed. After the 
municipality shapefiles were used to assign a municipality label to each 
observation, those observations with no associated municipality (i.e., those that 
fell outside of the borders of Metro Vancouver) were removed from the data. 
 

4.3 SEI Occurrence Modelling 
Given the uneven sampling of organisms in the GBIF occurrence data that 

is largely inherent to citizen science work, it was deemed important to model 
the predicted distributions and preferences of species and taxa across the entire 
area of Metro Vancouver, to better evaluate the importance of the land outside 
of the main data collection area to biodiversity. The first technique focused 
specifically on sensitive ecosystems, using the presence or absence of organisms 
in SEI polygons of specific classes and with specific characteristic as evidence of 
the likelihood of finding such species in similar environments. 
 

4.3.1 Data Setup 
As discussed in Section 2, environmental data sources were used to 

characterise each SEI in terms of its average temperature, precipitation, 
elevation, and distance to both fresh and saltwater; these data were coupled 
with intrinsic data on each polygon such SEI class, size, condition, and 
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surrounding land context (Metro Vancouver 2014). Before proceeding, polygons 
with no observations were removed in order to avoid negatively biasing 
predictions. In addition, species with observations in fewer than 20 distinct 
polygons were removed; while technically the analyses for these species would 
have the same ‘n’ values as all others (i.e., the same amount of polygons factored 
in), very low numbers of positive/present polygons can cause the equation to 
fail to converge and produce unreliable results, particularly with large numbers 
of predictive factors. Subsequently after the removal, this left 536 species 
remaining. 
 

4.3.2 Prediction 
A logistic regression equation predicting the presence/absence of 

organisms of a given species was produced for the 536 species mentioned 
above. Due to a number of the equations failing to converge, the species were 
further restricted with those producing equations with extreme and unrealistic 
parameters removed. This left us with a final group of 241 species. The 
parameters of these equations were stored in a dataframe which was given as 
input to the Python backend of the main application, which was then able to use 
them to compute an expected probability of finding each species for any given 
polygon. 

As an optional feature for the application, the procedure mentioned 
above was also conducted on the class taxonomy level. The intention of this was 
to produce predictions that, while less precise due to the heterogeneity of 
species within a class, take advantage of a greater proportion of the data since 
the requirement of the sum total of organisms within a class to have been seen 
in at least 10 polygons is far less restrictive. Of the 25 classes present in the full 
dataset, 19 classes both met this restriction and did not produce equations with 
extreme parameters. This feature can been included in parallel to the 
species-level predictions mentioned above. It should be noted that the choice of 
class was arbitrary. The same procedure could be applied to Kingdom, Family, or 
any other taxonomic level in the future if desired. 
 

 

4.4​ ​Species Distribution Modelling 
 
Why Use Species Distribution Modelling  

While the SEI-based analysis in Section 4.3 takes advantage of the SEI 
classification system, it is limited both by the resolution of predictions (i.e., some 
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polygons represent very large areas) and by its applicable area (i.e., no prediction 
is possible outside of sensitive ecosystems, which compose a great deal of 
Metro Vancouver). For this reason, a pipeline was established for Species 
Distribution Modelling (SDM), a statistical framework that would allow the 
assignment of probabilities of seeing an organism across the entire landscape 
and on a uniform scale (i.e., in consistent blocks as opposed to heterogenous 
polygons).  

 
What is Species Distribution Modelling 

The purpose of performing SDM is to predict suitable environments 
across the Metro Van landscape for the organism(s) being modelled as well as 
identify regions that are predicted to be unsuitable ​(Beauvais et al., 2006)​. The 
analysis produces a heat map indicating a suitability gradient with deep colored 
areas indicating landscapes that are predicted to be highly suitable. The 
modelling requires only two sources of data, species occurrence and 
environmental information . The modelling approach uses the values of the 
environmental variables at locations of known occurrence to find other 
geographic regions within the study area that are similar; locations with similar 
environmental values are then predicted to be a suitable environment for the 
organism though it may not have been actually observed there. The model has 
no temporal component and assumes that the relationship between the 
organism and its environment remains fixed over time. 

 
Model Implementation 

The species occurrence data was taken from GBIF with only species that 
had 40 or more observations included; environmental predictors included 
climate variables obtained from WorldClim2 and altitude data from the CDSM. 
The modelling was implemented in R using the “SSDM” package ​(Schmitt et al., 
2017). The package allows for the modelling of a single species distribution or a 
collection of different species. When multiple species are modelled together, 
Stacked Species Distribution Modelling (SSDM), the map output predicts the 
locations that would accommodate the greatest number of species that are 
being modelled (Schmitt et al., 2017). Locating these areas that are predicted to 
have high species richness could provide a clue towards identifying biodiversity 
hotspots (areas that support a wide range of species).  

 
The model output was visualized using an R shiny interactive application 

which allows the user to run different models with a choice of algorithms. See 
Schmitt et al (Schmitt et al., 2017). for more algorithm details. Changing the 
choice of algorithm may lead to more or less accurate results; since each species 
has its own unique distribution, certain algorithms will do a better job of 
predicting that species. The model map includes an accuracy measure which 



22 

indicates the overall percentage of correct predictions when the model was 
tested on unseen data. These output maps represent untested hypotheses about 
how species are distributed across Metro Van and contain uncertainty. They 
provide clues as to what environmental factors may be most important for 
driving species distribution and indicate areas of high suitability for the species. 
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5. Map Application Features 
The final deliverable of the project is a mapping application that 

facilitates not only spatial exploration of species occurrence, but a suite of 
additional features such as endangered species information, interactive summary 
charts, SEI species predictions, interactive time-series plots, and species 
distribution models. 

 

5.1 Map Viewer and Data Exploration 
The main utility of the map feature is to visually explore the GBIF species 

occurrences ​(Fig 5)​. A user must first begin by drawing an area of interest with 
either of two drawing tools (free-selection or rectangle). To plot species 
occurrences within the selected region, a user may choose from two 
approaches; either use the search feature to type a specific taxonomic group 
(i.e., kingdom, genus, species) or navigate through the taxon tree to select 
multiple taxa of interest. A user may then explore individual clusters of species 
until zooming in on one specific organism. Each species point provides a pop-up 
with scientific name, common name (if available), link to its wikipedia webpage 
and its IUCN red list status if applicable. 

 
Figure 5. Screenshot of the base map viewer. 

 
 

The map viewer contains two additional layers of information that may 
be turned on or off by the user. A user may turn on the municipalities feature to 
automatically draw the boundaries around each municipality found in Metro 
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Van. Clicking within the boundaries of any municipality produces a pop-up label 
for the municipality. 

A second layer allows a user to select and plot ecosystems of interest (i.e., 
Mature Forest, Wetlands) based off of SEI data . Clicking on any ecosystem 
polygon produces a pop-up label with more specific information about that 
polygon such as ecosystem sub-classifications and a quality score. Though the 
Modified Ecosystem category has 5 sub-classes, the map viewer clusters all 
these polygons together as one color; however, when the user clicks on a 
Modified Ecosystem polygon, all the specific information for that polygon (ie 
sub-class, quality score, % composition) can be seen in the pop-up label.  
 

5.1.1 Interactive Summary Charts 
When a user draws a region and plots species, summary charts are 

automatically generated for that region. The first chart provides the count of 
unique species for each taxon level observed. Clicking on any taxon bar will 
automatically generate a new unique species distribution plot for that particular 
group selected. For example, if a user selects the kingdom “Animalia”, then a 
unique species distribution of the phyla within the animal kingdom will be 
generated.  

The second summary chart displays the number of observations of that 
taxon group found in the data. A user may interactively select any taxon bar and 
generate a new plot based on that taxon group in the same way as with the 
unique species distribution chart.  

 

 
Figure 6. Screenshot of the interactive summary charts. 

 
 



25 

5.1.2 Time-Series Plots 
The time-series feature is also interactive in that the user may adjust the 

year interval as well as how to aggregate and normalize the data. The plot 
visualizes the number of observations for a particular category over time, 
providing a rough approximation for species abundance. A user has a number of 
categories to choose from to aggregate the observations; they may choose to 
view individual species records over time or entire kingdoms. There are also a 
number of additional custom aggregations that highlight species of special 
concern like pollinators, species that are endemic to the area, and IUCN red 
listed species. 

Viewing raw observation records over time may be somewhat misleading 
for some species since the GBIF records overall have been steadily climbing for 
the last decade ​(Fig 3)​. To remedy this, a user can choose to normalize the data 
by Year, Kingdom or Class. Normalizing by year assumes that if a species remains 
constant in nature, even if the number of new records climbs every year, the 
relative proportion the species contributes to the data overall will remain 
constant. Thus, while it’s expected that there are more observations of a given 
species for a given year than the year before, there is no ​a priori ​reason to 
believe that the percentage of data that belongs to the species should change. 
Normalizing by Kingdom and Class recognizes that citizen science initiatives can 
cause spikes in the sampling of certain taxa (even though those taxa may remain 
constant in nature), violating the assumptions of the normalization by Year. This 
can be true especially for birds due to the majority of all records that are 
attributed to e-Bird (Table 1). Normalizing by class essentially equates a bird that 
represents 2% of the total “Aves” data with, for example, a mammal that 
represents 2% of the total “Mammalia” data. 

 
 

 
Figure 7. Screenshot of the time-series plot. 
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5.2 Predictions 

5.2.1 SEI-Based Prediction 
The SEI-based prediction module has been designed to be an effortless 

extension of the SEI layer of the viewer. Provided the ‘SEI Prediction’ switch has 
been turned on from the menu, whenever the user selects a polygon from said 
layer, the prediction table automatically computes probability of finding each 
species/class with associated equations in that polygon and displays the results 
in a table. The table presents the rank of likelihood and whether or not the 
species/class was actually observed there in addition to the name and the 
probability itself; it is both searchable and sortable based on any of the 
mentioned variables. 
 

5.2.2 Species Distribution Modelling (SDM) 
The SDM module allows the user to run SDM analyses in real time and 

display the prediction results in a map output. A user must first decide if they 
will model single species or multiple species together. Next, the user can select 
from a range of different algorithms. Details of the algorithms included in the 
“SSDM” package can be found in ​ Schmitt et al. Lastly, the user can select the 
species they want to model. The stacked modelling works by modelling each 
species separately and then overlying the results together, therefore, modelling 
multiple species can take a great deal more processing time. When modelling a 
single species the darker colored areas have higher probability of being suitable 
environment for the species. When modelling multiple species, the darker 
colored regions indicate higher species richness.  

 

6. Discussion 
 

6.1 Occurrence Data Sources: GBIF and Alternatives 
Having the entirety of the observation data come from a single source, 

GBIF, streamlines the data collection process and makes the application far 
easier to update in the future; but this does open up the possibility that there 
are potentially other useful data sources that are not utilized. However, this 
possibility should be slight based on extensive research into alternate data 
sources at the beginning of the project. By and large, it was discovered that all 
sources of biodiversity occurrence information either already fed into GBIF, were 
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not publically accessible, or did not meet set standards. In regards to data that 
are not publicly accessible, such sources would greatly limit the ability to 
distribute the application even in the cases where the data could eventually be 
obtained.. As for data that did not meet set standards, it was found that many 
sources that at first appeared as though they might have been useful (e.g., 
E-Flora and E-Fauna) either did not have organized data that was extractable in a 
useable format (e.g., data would need to have been extracted on a 
species-by-species basis), or did not have georeferenced data which would have 
completely prevented its use in the application. In sum, it was determined that 
GBIF constituted the best data source for the project.  
 

6.2 Limitations 
 

6.2.1 Limitations of Citizen Science 
As indicated by Table 1, the majority of occurrence reports in the GBIF data came 
from the citizen science-based sources iNaturalist and especially e-Bird. While 
citizen science represents a cost-effective and community-minded method of 
aggregating biodiversity information across large regions, it comes with a 
number of inherent limitations.The two primary limitations that affected every 
aspect of our work were bias in what organisms were recorded and bias in 
spatial sampling.  

 
Organism Bias 
In the first case, the data were hugely biased by the relative size of the e-Bird 
data source, which contains only organisms from a very specific class (Aves). 
Even if none of the data sources were this specific, bias across the spectrum of 
life is inevitable, the concept of ‘plant blindness’ is well documented (Allen, 2003 
for example (and likely applies to fungi as well). Even though ecosystems 
virtually require more plant life than animal life in order to function, our data 
contained almost all animal reports and less than 2% plant reports. Another 
issue is that microscopic life cannot be sampled at all through citizen science, 
when it is known that the microbiome of an ecosystem is hugely important to its 
health (Garcia-Palacios et al., 2014, Schnitzer & Klironomos, 2011). 
 
Spatial Bias 

The second limitation is in regards to spatial bias. There is no way to 
control for the places that citizen scientists frequent and are thus more likely to 
make observations. This problem can clearly be seen from the viewer when 
examining the number of observations in places such as the unincorporated land 
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of Electoral Area A north of West Vancouver and the municipality of North 
Vancouver. In general, it appears that the more remote an area is the fewer 
observations will be recorded; in reality, the quantity and diversity of life is likely 
to be just as high if not substantially higher in these undeveloped areas. Another 
illuminating example is the high number of observations in the University 
Endowment Lands, around which many people live and work.  
 
Overcoming Bias 

When it comes to organism bias, reducing redundant data helped to 
reduce the bias (since most of the overlapping observations of the same species 
that were removed were birds and hardly any were non-animals), but 
eliminating the bias without purposefully and arbitrarily removing data is simply 
impossible. This information is still highly useful as long as users keep this bias in 
mind, and understand that this is a tool for tracking human observations of 
wildlife, not for accurately sampling relative proportions of wildlife.  
 

Spatial bias is similarly hard to remove, and has also been addressed on 
the viewer home page. The two modelling techniques used in the project are 
essentially both attempts to address it by extending our ability to make 
judgements on the presence of a species over a wider area than just that area in 
which they have been recorded. SEI-based predictions have the obvious spatial 
limitation of being limited to sensitive ecosystems, though thankfully this fact is 
clear to the user since they access the predictions through selecting individual 
SEIs.These modelling techniques come with their own limitations, discussed 
below. 
 

6.2.2 Lack of Abundance and Diversity Metrics 
One inherent limitation to the eclectic mix of data sources included within GBIF 
is the exclusion of abundance data, a variable that is heavily used in ecology 
(Preston, 1948). The underlying assumption of the application is that the more 
observations of a given species in a given area, the greater that species’ 
abundance in that area. However, when dealing with non-systematic data, the 
number of observations is less of a measure of real-world abundance and more 
of a correlated variable, as it is expected that observations for a species/location 
that is more abundant in actuality should produce more abundant records in the 
data. However, this may not be the case. As discussed above, systematic biases 
over both the tree of life and the area of Metro Vancouver conspire to amplify 
observations of certain organisms in certain places, drastically limiting the ability 
to make comparisons. For example, while there are more observations logged for 
the City of Vancouver than for the City of Coquitlam, it cannot be  confidently 
concluded that there is more wildlife in the City of Vancouver. An effort has 
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been made to combat organism bias in the time-series viewer by allowing the 
user to standardize raw counts based not only on the total number of records 
for the year but by the number of records in the corresponding Kingdom and 
Class. However, this doesn’t eliminate the problem. 

The same argument applies to the measure of diversity (the degree to 
which an environment supports many different kinds of life). Due to the same 
biases (particularly the undersampling of non-animal life which makes up the 
majority of extant species), even the multi-species output of the SDM module 
should be considered a rough estimate of diversity hotspots as opposed to a 
true metric. 

The inability to achieve true abundance and diversity metrics has less to 
do with the presence of citizen science data in GBIF and more to do with the 
lack of systematically-sampled sources. In order to derive abundance for our 
region of interest one would need a comprehensive survey of the entire area of 
Metro Vancouver, and in order to arrive at diversity, this would need to be done 
for at least a wide-ranging ‘bundle’ of representative species that may or may 
not include microscopic organisms. Overall, such ecological metrics are 
preferably used in systematic academic studies that focus on small areas and 
limit their species scope. 
 

6.2.3 Temporal Limitations 
Depicting the element of time in our dataset proved to be a challenge 
throughout this project, and several methods were prototyped to allow the user 
to control what time periods they saw on the map viewer (including the option 
to display occurrences from different seasons). This feature was ultimately 
abandoned for two reasons: a) in most forms it proved unsightly, unwieldy, and 
often imposed a processing power cost that slowed down the application, and 
b) it was decided that it would be unlikely for a user to require such temporal 
control in tandem with the spatial navigation offered by the map viewer. These 
concerns inspired us to create the temporal summary module that exists in the 
final version; this module confers many benefits including the ability to 
standardize across time using several different methods and compare different 
taxa change over time. 

The other concern arising from the temporal nature of our data is 
whether or not biodiversity information from different time periods can truly be 
compared. While this is not a problem on a small scale, our data span 319 years, it 
is quite possible that old observations logged organisms that can no longer be 
found in the Metro Vancouver area or vice versa. In addition, designations that 
were applied to the data (most notably the IUCN Red List) are also temporal in 
nature. At present, occurrences are flagged as being part of the Red List if the 
species matches the copy of the Red List from June 2019, regardless of whether 
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or not they were endangered at the time of observation. While this is unlikely to 
bother most users, it does raise the question of whether or not our data should 
have an ‘expiry date’: if a large portion of the observations of an organism were 
made prior to a decline in their population, can the information concerning their 
spatial distribution be trusted? 

Some of these issues are mitigated by the fact that the vast majority of 
the data was recorded in the 21st century (Figure 2), but this in and of itself limits 
our ability to make judgements about longitudinal change that the temporal 
summary module was created to enable. 
 

6.2.4 General Modelling Limitations 
While they are intended to address spatial bias in the data, one manner in which 
either SEI or SDM-based predictions are still affected by the spatial distribution 
biases of our data is if there are significant differences in some of the 
bioclimatic/topographical variables used to inform the predictions. For example, 
as mentioned above the mountainous region of Metro Vancouver north of West 
and North Vancouver is sparse in observations - if these polygons/areas have 
higher altitudes than the southern areas with more observations, then the model 
is likely to underestimate the probability of finding organisms in any area of the 
map with high altitude. This is especially a problem for SEI-predictions since so 
many of the SEI polygons are located in this area. While this bias was reduced by 
eliminating the SEI polygons with no observations, it was decided to not remove 
polygons containing low numbers of observations. The reverse could be true for 
SDM. Since there are few observations at sea, for example, the low altitude 
values of ocean areas might prompt the model to predict that low-altitude 
regions are less hospitable to life than they really are. 

As discussed earlier, the major limitation of SEI-based predictions on the 
species level was that only a small proportion of species could be assigned 
predictions at all. While SDM was based entirely on continuous data (i.e., 
temperature, elevation), SEI classes themselves are multi-level categorical 
variables and very few species were seen in all 14 possible classes. While ideally 
all equations would have been based on the same input variables, inputting a 
predictor with zero variance (i.e., including the percentage of a polygon that is 
class X as a predictor, when the species has never been seen in that type of 
terrain) is both uninformative and can cause the model to fail to converge. Thus, 
for each species’ equation, SEI classes were dropped in which it was never seen. 
This leads to the question of how to predict the probability of finding a species 
in one of these absent classes, and while the intuitive answer is to propose that 
a probability simply cannot be assigned, this becomes difficult when trying to 
make judgements for polygons that are only partially composed of the offending 
class. Assigning values of zero was not an option either, since many of the class 
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parameters were negative, and thus a “zero” parameter might have indicated a 
preference for an environment that an organism was never seen in compared to 
an environment it was rarely seen in. It was decided to assign the lowest 
parameter in the equation to all “missing” parameters. What this essentially 
means is that with all other factors being equal, the probability of finding an 
organism in an environment in which it was never observed is equal to the 
probability of finding it in the least common class it was observed in. It was 
determined that these alterations to the prediction equations were necessary, 
but they are still problematic, and the results are not the “true” results of a 
regression equation. 
 

6.2.5 SDM Specific Limitations 
 

 
Limited Species 

 
SDM can only be performed on a subset of the GBIF data. The minimum number 
of observations required to make a good predictive model is highly dependent 
on the species and the nature of the data that has been collected; the literature 
has offered anything from as low as 10 observations to as high as 90 as a 
minimum threshold ​(Beauvais et al., 2006). A threshold of at least 40 
observations was chosen to ensure there was a reasonable amount of 
observations to evaluate the model after model training. The data is partitioned 
into 70% for training and 30% for testing. Applying this cut-off meant that only 
361 unique species out of our ~10,000 could be modelled using SDM. 
 

Presence Only Data 
 
The GBIF data is presence-only data and contains no information on species 
absence or potential absence. This reduces the statistical power and prediction 
performance of the models. Since in practice absence data is rarely available, 
pseudo-absence data is commonly used when building SDM models and this 
method is implemented automatically in the SSDM package ​(Beauvais et al., 
2006)(Elith et al., 2006)​. Though the models are evaluated quantitatively, the 
accuracy metric should still be approached with caution because the evaluation 
data set is built using this presence-only data which is bound to contain spatial 
biases ​(Elith et al., 2006)​.  
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6.3 Future Directions 
 

6.3.1 Updating the Application 
At present the application does not update automatically to accommodate new 
information being absorbed by GBIF (for reference, each data source on GBIF 
updates according to a different schedule, some as frequently as every two 
weeks). An effort has been made to ensure that by downloading the data 
pertaining to Metro Vancouver and processing it with certain scripts, the 
administrator of the application can manually update the database at whatever 
regularity suits them. In the future, it would be helpful to allow the application 
to automatically update itself through a GBIF API. 

Furthermore, as mentioned in section 6.2.3 endangered statuses for 
species are inherently temporal; the species that are endangered today may not 
be the same five years from now. While it would be useful to automatically 
update endangered statuses, it should be noted that this task may be more 
difficult than updating the base GBIF data since endangered statuses come from 
multiple sources. These sources are also not necessarily as accessible as GBIF. 
Both the IUCN and BC/SARA endangered species lists had to be obtained in .csv 
format by manually selecting options and downloading files. It is possible that 
there are APIs or other ways to scrape data from these sources without using 
their website user interfaces but this was not uncovered during the project.  

In addition to fetching the newest data from the sources, it is also 
necessary to aggregate the new data and update the prediction metrics. 
Currently, a separate file stores all the data related to the species in GBIF. That 
file needs to be updated with incoming data. The models for SEI prediction also 
need to be re-run. 

Continued work on the app is not limited to the addition of new data, 
however. Minor maintenance will likely be needed in the next few years to 
ensure that as the packages that the application relies on develop and change, 
these changes do not create downstream problems. This is particularly true of 
D3, the JavaScript library that underlies the hierarchical organization of both the 
taxonomic tree and the species distribution bar charts. Because of its recency 
and rapid development, it is likely to force a change before the other elements 
of the app. 

The app can also be modified to add new features. One of the simplest 
ways to add functionality is to add geographic information in the form of layers 
like polygons similar to the SEI or municipality data currently being used. Just as 
municipalities and polygons can currently be overlaid on the basemap and 
selected to allow the viewer to examine species occurrence within that region, 
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new layers such as watersheds or university land boundaries can be added. Since 
the application is already setup to accommodate these geojson layers and 
transmit their coordinates to its exploratory modules, integrating further layers 
can a simple process. 

 

6.3.2 Extensions of Modelling 
Both the SEI and SDM modelling techniques used in this project were 

developed towards the tail end of the project, and while they represent a 
beginning point for modelling taxon presence across space, they were not the 
focus of the project and were not refined to the extent of the other modules. 
Future work could extend these models in a number of ways. 

The simplest would be including additional data in each modelling 
technique. For example, distance from fresh and saltwater was calculated only 
for SEI polygons and was not factored into SDM - similarly, SDM contains many 
climate-relevant factors that were not used in the SEI-based predictions. 
Another possibility is rasterizing the SEI polygon vectors and including them as a 
predictive layer in the SDM analysis so that SEI classification can benefit both 
modelling techniques - alternatively, Metro Vancouver possesses a land 
classification raster dataset that is less precise in some of its categorizations 
than the SEI but covers the entirely of the Metro Vancouver area at a precision 
of 5m (more than enough to be used by the current SDM model). One suggested 
candidate for completely novel data that could be added to both models is air 
quality. While current air quality data is provided by Metro Vancouver, historical 
data that would be needed to characterize a tract of land was not found during 
the project. If future work could obtain such data it might be useful, especially 
for modelling the prevalence of organisms that depend heavily on the molecular 
composition of the air, such as many species of plants. In addition, including soil 
quality rasters would be useful when modelling plant species. 

Alternatively, future work could explore the inverse of the above: 
removing uninformative variables. The SDM model especially contained a suite 
of bioclimatic variables many of which are semi-redundant with one another 
(e.g., “average temperature”, “average temperature of the hottest month”, 
“average temperature of the coldest month”). By comparing their explanatory 
power across different species, it is possible to determine the best candidates 
for removal. 
 

6.3.3 Gap Analysis 
Though the BC species list was not an exhaustive baseline for the species that 
live in Metro Van, it did identify at least some species that are expected to be 
found in Metro Vancouver. When comparing the Metro Van tagged species to 
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the GBIF data, ~ 70% of the Metro Van BC List species were found in GBIF. 
However, this leaves ~ 30% (about 100 species) that are expected to be found in 
Metro Van but were not observed on GBIF. This list of 100 species is a good first 
step towards identifying a data gap. In future, these species would be 
candidates for an organized Bioblitz or other local Citizen Science initiative.  
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