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1 Introduction

This report summarizes the collaborative work between the 2019 UBC Data Science for Social Good (DSSG) fellows
and the British Columbia Centre for Disease Control (BCCDC).

1.1 The BCCDC

One of the responsibilities of the BCCDC is to review and extract information from laboratory test results. The extracted
information is used to identify cases that meet criteria for reportable communicable diseases for disease surveillance
and for population health research purposes. The challenge lies in extracting information efficiently due to the nature of
the laboratory test result data. The lab test results are written by lab technicians, who can use a code that generates the
text automatically (the code is registered by the lab technician), or input free-form text, or input a combination of those
two. Consequently, the lab test results are semi-structured text, and they inevitably contain human-made errors. More
importantly, no simple rule-based method can be used on the laboratory test results to extract information. Currently,
the lab results are being labeled more or less manually by domain experts. In particular, for each lab result, three targets
of interest need to be extracted:

• test_performed: an indicator whether a test for an organism of interest is performed.

• test_outcome: an outcome of a test. Its levels are positive, negative, missing, and indeterminate.

• organism_name: the name of an organism that is being tested for.

Figure 2 shows the examples of the labeled lab test results from Figure 1.

The manual labeling process is too expensive and time-consuming for the BCCDC. While a simple solution is to enforce
a rule to write lab test results in a structured way (due to technical difficulties, this is not feasible at the moment), the
historical lab test results need to be labeled anyway. In search for an automated process to label the lab test results,
the BCCDC and the 2018 DSSG fellows conducted a preliminary investigation of applying machine learning methods
(Chen et al., 2018). The 2018 DSSG fellows built a pipeline for analyzing the laboratory results using machine learning
classifiers and showed that the machine learning classifiers achieve a high level of performance in terms of (unweighted)
accuracy for test_performed (99%) and test_outcome (98%).
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Figure 1: Examples of laboratory test results.

Figure 2: Examples of labeled laboratory test results.

1.2 Contributions

Building upon the last year’s work, our initial goal, as suggested by the BCCDC, was to improve the existing pipeline
in terms of accuracy and computational efficiency and to assess the use of a terminology dictionary for the task of
labeling organism_name. We started with learning about the data at hand. We delved deeply into the data and postulated
potentially useful features based on summary statistics and visualisations (Section 2). We then examined and critically
evaluated the existing pipeline. In addition to incorporating the additional features obtained by our exploration of the
data, we made several improvements on the pipeline. The most important improvement is implementing hyperparameter
optimization (Section 3.10); results of using the additional features and hyperparameter optimization are given in
Section 4.1. At the same time, we realized that the machine learning methods used in the last year are not appropriate to
help the BCCDC meet the ultimate goal of labeling lab test results when there exists more than one organism of interest
in a lab test result. The machine learning methods in the existing pipeline do not have the capability to identify multiple
organism names and their corresponding outcomes in a lab test result, such as the last row of the table in Figure 2; see
Figure 3 for the fully labeled version of it. In Section 3.8, we propose an appropriate machine learning method based
on neural networks to solve that problem. However, we encountered another common problem in machine learning.
The BCCDC did not have a fully labeled (training) dataset of lab test results containing more than one organism of
interest. In Section 3.9, we introduce a framework, called active learning, for sampling unlabeled data efficiently to
create a training dataset. Another advantage of this framework is that the proposed machine learning model is trained at
the same time. The active learning framework would allow the BCCDC to label a smaller amount of data to achieve
the same level of performance. As this new objective of fully labeling lab test results with multiple organisms was
defined towards the end of the project, we built a business case of using the active learning framework with the proposed
machine learning method on a simple labeled dataset that only contains one organism of interest, Hepatitis C virus
(see Section 2.5 for the description of the dataset). In Sections 4.2 and 4.3, we illustrate that the proposed machine
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Figure 3: An example of fully labeled laboratory test results.

learning method actually performs better than the machine learning methods used in the existing pipeline and that a
much smaller sample size is required to achieve a high level of performance with the active learning framework.

1.3 Data Science for Social Good

The Data Science for Social Good (DSSG) Program at the University of British Columbia (UBC) is a 14-week summer
fellowship program hosted by hosted by the UBC Data Science Institute and sponsored by Boeing, CIFAR, and MITAS.
It is designed to provide an interdisciplinary data science research experience in collaboration with an organisation
(BCCDC for this project) for undergraduate and graduate UBC students across different disciplines with the aim of
bringing benefits to the society. At the end of the report, we discuss how our work would bring social good and how we
envision the proposed framework would be implemented.

2 Data

The data was extracted from electrical clinical records of individual tests conducted by the BCCDC’s lab, which was
mainly unstructured free form text data. Sensitive personal information was removed due to privacy protection protocol.

The original dataset includes records from multiple lab tests each aiming to identify certain type(s) of microorganism.
The initial goal of this project is to automate the classification process for the three targets described in Section 1.1, with
the targets test_outcome and organism_name dedicated to the most critical microorganism tested; as the project
proceed, we naturally come to a new objective that requires finding the corresponding test outcome for multiple
microorganisms involved in a lab test, which can not be accomplished by the current machine learning method. Due
to the complexity of the new objective, we apply only a subset of the original data to tailor the deep learning method,
which will be described in Section 2.5.

The original dataset consists of about 400,000 test results, each composed of the text of a lab report along with other meta-
data, all stored in the database columns. More specifically, the text of a lab report is stored as result_full_description.
A result_full_description is made of several observations, stored as result_description, which is a block of text that
is appended to result_full_description one at a time, separated by pipes (as shown in Figure 1.). A lab report has the
following essential metadata:

• The test_key and result_key that are generated by the system as a hash code.

• The test_type, test_sub_type,test_name, test_code that describes a specific test routine.

• A system generated hash code, result_tech_key, for the lab technician who composed the test record.

• The ID of the lab record system that the test result comes from, stored as the dss_instance_id.

In the database, each lab report is identified uniquely by a pair of test_key and result_key, thus all data rows that have
the same test_key and result_key pair have identical metadata. Therefore, concatenating all observations of the same
test_key and result_key pair, ordering by the sequence number, gives us the full original lab report.

The three targets of our classification task are stored as test_performed, test_outcome and level_1 and level_2. It
is worth noting that the genus and species type of the tested microorganism are stored separately in level_1 and
level_2. If multiple microorganisms are involved in a lab test, then only the most crucial organism is reported. The
test_performed target has two classes, yes and no. Intuitively, if test_performed is yes, then the lab test was carried out
successfully. On the contrary, test_performed will be marked as no if the lab test did not happen because accidents
such as broken specimen. The test_outcome target has four classes: positive, negative, indeterminate and missing. A
positive test_outcome indicates the organism specified in level_1 and level_2 is found positive in the test. A negative
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test_outcome can be interpreted similarly. If it is unclear whether the microorganism is present or not, then test_outcome
is marked as indeterminate. Moreover, if the test_outcome of a lab report is not yes, then level_1 and level_2 are
automatically marked as Not found.

One challenge of this project is the serious class imbalance, as displayed in Figure 4 and Figure 5. For example, for the
test outcome target, there are rarely instances for the intermediate class. As for the organism name target, the ’Not
found’ and ’Hepatitis C Virus’ classes take up the majority of the whole dataset while all remaining classes only have a
few instances. To account for such imbalance, we introduce a customized performance metric as described in Section
3.4.2.

Test Outcome Proportion of the entire data

Positive 0.17

Negative 0.13

Missing 0.69

Indeterminate 0.01

Figure 4: Test Outcome Class Distribution

Organism Name Proportion of the entire data

Not found 0.48

Hepatitis C Virus 0.22

Streptococcus 0.07

Other 24 classes 0.23

Figure 5: Organism Name Class Distribution

2.1 Machine Learning Feature Extraction

For the purpose of applying machine learning, we extract from the records certain fields that are considered helpful
features in the classification task. Below is the set of features that are used in the classification scheme:

1. Test Type: A specific type of lab procedure or methods for conducting a clinical test. For example, one’s test
type can be PCR, culture and so on.

2. Lab Technician ID: It is considered as a useful feature because each lab technician has a specific writing style.
3. Number of observations: Lab technicians composed the record in multiple blocks of text as shown in Figure 1.

When the lab test result is positive, the lab technicians generally compose more text than when it is negative,
in order to describe more details of the finding.

4. Result Full Description: Block of text that describes the procedure and the outcome of the entire lab test.
5. Candidates: A list of viruses, bacteria or eukaryotes found in result full description annotated by MetaMap

(introduced in the following section).

2.2 Bag-of-Words

In order to prepare the words in the result full description to be used in our classifiers, we need a numerical representation
of the results descriptions. We will be using a Bag-of-Words approach to represent the result descriptions. The Bag-of-
Words method works by count vectorizing each result description. This will create a vocabulary of words obtained from
all the words in our corpus of result descriptions. This will transform our data set such that for each observations, the
feature space is spanned by the vocabulary, and the corresponding values for each word will be count of the given word
within the given result description. In addition, we will also be count vectorizing the results of MetaMap (Section 2.3)
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and append outputted candidates to our feature space. Immediately, some potential downfalls of this approach is the
data set will become extremely sparse, and by only using the counts, the order of the words are lost.

2.3 MetaMap

One core difficulty of this classification problem is that the text input contains many clinical named entities and a huge
variety of acronyms, especially the naming for microorganisms. As a counter method, we use MetaMap, a biomedical
text annotation tool, as a helper to interpret the semantics of our clinical text data. Metamap uses knowledge-intensive
approaches such as symbolic approach, natural-language-processing and computational linguistics to map text into
Unified Medical Language System (UMLS) concepts. For each lab test to classify, we annotate its result full description
with MetaMap and use the identified microorganisms as a machine learning feature.

2.4 Data Preprocessing

Raw data is queried from the BCCDC’s SQL server in a table format. Since the result full description field is free-form
text, the data needs to be processed prior to classification to remove noises. Furthermore, certain machine learning
features discussed in section 2.1 are not originally contained in test records and need to be extracted from raw data. The
preprocessing steps are as follows:

Preprocessing steps for the description field:

1. Deduplicate and remove empty entries.
2. For each observation in a result full description, convert all the words to lowercase and remove all characters

that are not letters, numbers or spaces.
3. Replace all numeric words with token "_NUMBER_".
4. Replace all date specifying words with token "_DATE_".
5. Remove sentences that contain "previously reported as" (which indicates that the conclusion following has

been overwritten and is no longer valid) so that the false report does not affect classification.
6. Concatenate observations into result full description based on sequence number. Using ’$’ to separate sections

in an observation and ’|’ to separate observations.

General preprocessing steps:

1. Generate a new field "Number of Observations" for each test by counting the number of ’|’ in each result full
description.

2. Use MetaMap to annotate each test’s result full description and create a new field "Candidates" that contains
the list of microorganisms found by MetaMap.

2.5 HCV data

During later stage of the project, a new objective arises to identify all microorganisms and their corresponding test
outcome in a lab test. It comes to our realization that the current supervised learning scheme is not suitable for the
task and deep learning would be a better approach; however, since many lab tests in the existing data involves a group
of microorganisms that are not labelled and thus are not feasible for multi-class classification, the BCCDC provides
us with a new data set containing lab tests for only one known microorganism: Hepatitis C Virus. The HCV data is
dedicated to developing the deep learning module.

This new dataset is processed using the same steps described in section 2.4. Since the deep learning method is developed
to be possibly modified into a multi-class method, we are suggested to replace the microorganism name in the description
text with a token. In the HCV dataset, for example, we replace all the occurrence of the name Hepatitis C Virus along
with its various acronyms with the token "TARGET" prior to training.

3 ML Techniques

In this section, we will go over the machine learning methods we will employ to solve our classification tasks. We
are faced with both a binary classification problem in the case of test_performed, and a multi-class classification
problems for test_outcome and organism_name. There are many classification algorithms that are appropriate for
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these classification tasks. All of the classifiers will take in as input the feature matrix created by count vectorizing the
result_full_description of the data set in order to perform classification. However each classifier will differ in how it
utilizes the inputs to produce its final prediction. We will utilize both linear and non-linear mapping of the feature
matrix to the target variables. Linear models assumes that the target variable can be expressed as a linear combination
between the features (the words that make up the result_full_description). The linear models that we will use include
Support Vector Machine and Logistic Regression. As the name suggests, non-linear models performs a non-linear
mapping from the feature vector to the target variable. The non-linear models we will use include Random Forest and
Adaboost. Detailed explanations of each classifier used will be expressed in the next section. For each target variable,
in order to select the best classifier for the task, we will perform 5-folds cross validation. At each fold, each classifier
will be trained using the 80 percent of the training data, reserving 20 percent for validation. The classifier with the best
average cross validation score (accuracy or f-score) will be selected. The selected classifier will then we trained on the
entire training set and tested on the validation set.

3.1 Naive Bayes

The Naive Bayes classifier is a probabilistic classification model that is based on the Bayes Classifier that aims to
compute the posterior P (y|x) given the conditional distribution P (x|y = yi) and the prior P (y) of the training data set.
The posterior can be computed using Bayes Rule:

P (y|x) =
P (x|y)P (y)

P (x)
(1)

(2)

One method to compute the conditional distribution P (X|y = yi) is to assume the features X is drawn from some dis-
tribution, for example Gaussian. In our case, our features will be the counts of each word in each result_full_description.
So, the Gaussians will have be parameterized by a mean vector µ and covariance matrix Σ. The posterior is then defined
as:

P (y|x) =
N(x|µΣ)P (y)

P (x)
(3)

where P (x) =
∑
i

P (yi)N(x|µyi ,Σyi) (4)

However, computation of Σyi is a non-trivial task, so we can take a Naive approach of assuming all of our features are
independent, that is:

Σyi = In (5)

An immediate potential downside to Naive Bayes is this naive assumption of independence of features, likely this
assumption is violated in our data set, especially in the uni-gram case. For example words such as "Escherichia" and
"coli" are likely highly correlated. However, there is empirical evidence to suggest that although Naive Bayes is optimal
only when the independence assumptions holds true, Naive Bayes can still yield optimal results when evaluated by
misclassification rate (Domingos and Pazzani, 1997). With this in mind, the Naive Bayes classifier should still yield
reasonable results, or at least provide a baseline for the solving the test_performed (binary) classification problem.

3.2 Logistic Regression

Logistic Regression is an extension of linear regression that models the probability for categorical response variables.
In our case, these will be the labels for each of our desired target variables test_performed, test_outcome, and
organism_name. Observe that a normal linear model would not be appropriate for this task given that range for the
output of linear regression is the real number line. Given our categorical outputs for each target, unless we apply some
transformation to the output, this would lead to nonsensical results. So, with logistic regression we instead model the
probability (log-odds) of each response. One assumption that still holds true is that we assume that the features are
linearly related. In the binary case, the logistic model is defined as:

log
P (Y = 1)

1− P (Y = 1)
= β0 + β1x1 + · · ·+ βnxN (6)
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The logistic model with N features will have N + 1 learned parameters {β0, β1, · · · , βN} which we will denote as θ.
We can retrieve P (Y = 1) from (6)

log
P (Y = 1)

1− P (Y = 1)
= θTx (7)

P (Y = 1|X, θ) =
exp(θTx)

1 + exp(θTx)
=

1

1 + exp(−θTx)
(8)

In order to learn the parameters θ, we want to find θ such that we maximize the conditional log-likelihood of the training
data:

log

n∏
i=1

P (yi|xi, θ) =

n∑
i=1

−(1− yi)θTxi − log(1 + exp(−θTxi)) (9)

Unfortunately, (9) has no closed form solution, so we will estimate the parameters via numerical computation.
This binary logistic regression will work for evaluating test_performed, however for the other two target variables
test_outcome and organism_name we will need to extend the logistic regression to a multinomial setting. ForK possible
classes for the target variable, we run K − 1 binary logistic regression models as outlined in (6), where one outcome is
chosen as a baseline variable. That is:

log
P (yi = 1|xi)

P (yi = K|xi)
= θ1xi

log
P (yi = 2|xi)

P (yi = K|xi)
= θ2xi

· · ·

log
P (yi = K − 1|xi)

P (yi = K|xi)
= θk−1xi

(10)

The probability for each individual class can be computed by computing the probability for each of the K − 1 binary
logistic regressions as outlined by (8). For each observation, it will assigned to the class in which returns the highest
probability. One possible downside to using (multinomial) logistic regression is the number of parameters that need to
estimated. Given the large number of covariates (count vectorized result_full_description), lets call this r, we will need
to estimate (r + 1)× (K − 1) parameters. Given the sparsity of the data set we are dealing with, it may be difficult to
properly pick up the signals. One way we can tackle this issue is through regularization.

3.3 Regularization

Given the nature of the bag of words approach, we are introducing a high number of features, many of which are very
sparse. Therefore, our models will be very complex which could pose the risk of overfitting our data. One method
we can use to tackle this is problem is through Regularization. Regularization is performed by adding an additional
regularization term to the loss function that we are optimizing. There are three common approaches to regularization:
Lasso(L1), Ridge(L2) and Elastic-Net. The three regularization methods differ in the regularization term used when
optimizing the loss function. For Logistic Regression, we are trying to maximize the condition log-likelihood of the
training data (9), this is equivalent to minimizing the negative log-likelihood.

Lasso Regularization (L1)

θ̂lasso = arg min
θ

[
−

n∑
i=1

−(1− yi)θTxi − log(1 + exp(−θTxi)) + λ

p∑
j=1

|θj |
]

(11)

Ridge Regularization (L2)

θ̂ridge = arg min
θ

[
−

n∑
i=1

−(1− yi)θTxi − log(1 + exp(−θTxi)) + λ

p∑
j=1

θ2j

]
(12)

Elastic-Net Regularization

θ̂elasticnet = arg min
θ

[
−

n∑
i=1

−(1− yi)θTxi − log(1 + exp(−θTxi)) + λ1

p∑
j=1

θ2j + λ2

p∑
j=1

|θj |
]

(13)
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All three methods of regularization apply a penalty parameter λ to the norm the parameters, L1 norm for the Lasso and
L2 norm for Ridge. Elastic Net regularization combines both the L1 and L2 norm. The intuition behind this is given a
model with very low bias, if we are fitting our training data too well, we can apply some penalty to the parameters to
make it less perfect. The penalty parameter λ determines how significant the penalty should be, this is hyper parameter
that needs to be tuned. Too small of a penalty and we may not address the overfitting problem, and too high of a penalty
can swing the problem in the other direction, underfitting. Lasso regularization has an additional ability to shrink some
coefficients to zero, which can be interpreted as feature selection. That is, L1 regularization can help remove useless
variables.

3.4 Metrics

Choosing good metrics is important not only because they are necessary to evaluate model performance, but also
because they are used to tune our model during cross validation. When choosing which metric to use, it is imperative
we keep in mind the problem we are trying to solve, as well as the data set we are working with.

3.4.1 Common Metrics: Accuracy and F-Score

A common and very intuitive metric to assess the performance of our models is accuracy, that is the sum of all true
positives and true negatives over the total number of observations. For multi class classification problems such as ours,
it often the case that it is much more difficult to correctly classify the smaller classes due to the lack of training data.
Since our data set faces a severe class imbalance, it is possible that we will get misleading results if we use accuracy as
our performance measure. This is because that accuracy only takes in account how many predictions are correct, and
does not take into account which class the correctly predicted samples are from. It is possible for our model to achieve
high accuracy if we correctly predict the larger classes and fail to predict the smaller ones.

F-score is another common measure and provides some advantages over accuracy. Firstly, since F-score is the harmonic
average between precision and recall, it will punish the model for over predicting the larger classes. Furthermore,
it also give us flexibility and deciding how much we want to weigh the importance of precision and recall. For test
performed, false negatives are much more undesirable relative to false positives, so, we can choose to weigh the recall
more significantly. Furthermore, since we are dealing with a multi class classification problem, we take the F-score of
each individual class and average them. We can choose to either weigh all classes equally, or even weigh the smaller
classes more significantly to deal with the class imbalance.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(14)

3.4.2 Inversely Weighted Metrics

For our models, we want to more heavily punish incorrectly classifying the smaller classes, likewise we want to lessen
the reward of correctly classifying the larger classes. We can accomplish this task by calculating the F-score and
Accuracy more each individual class, then take an inversely weighted average. That is, the larger the class, the less
weight we assign to it, and vice versa. The weight for class i is:

wi = z ×N/ni, (15)

where ni is the sample size for class i and z = 1/
∑
iN/ni is the normalizing constant. Then the overall F-score is the

weighted average of the F scores of each class:

Fmodel =
∑
i

wi × Fi, (16)

where Fi is the F-score for class i.

3.5 Support Vector Machine

Support Vector Machines is a supervised learning algorithm that aims to draw a separating boundary between classes.
For binary classification, suppose the data is linearly separable, then there is in fact many such boundaries that exist
such that the data can be perfectly separated. SVM aims to find the boundary that maximizes the margin between the
boundary and the training samples. That is, it aims to find a decision boundary that is as far from the data points as
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possible. Thus, we aim to solve this optimization problem:

max
w,b

2c

‖w‖
(17)

s.t. yi(w
Txi + b) ≥ c, ∀i

where c is a scalar, if we set c = 1, it simplifies (17) without changing the optimization problem.

max
w

2

||w||
⇐⇒ min

w

1

2
||w||2 (18)

We write in a Lagrangian form:

L =
1

2
||w||2 −

∑
i

αi[yi(w · xi + b)− 1]

∂L

∂w
= w −

∑
i

αiyixi = 0 =⇒ w =
∑
i

αiyixi

∂L

∂b
=
∑
i

αiyi = 0

L =
1

2
(
∑
i

αiyixi) · (
∑
i

αiyixi)− (
∑
i

αiyixi) · (
∑
i

αiyixi)

−
∑
i

αiyib+
∑
i

αi

=
∑
i

αi −
1

2
(
∑
i

αiyixi) · (
∑
i

αiyixi)

=
∑
i

αi −
1

2
(
∑
i

∑
j

αiαjyiyjxi · xj)

This is a quadratic optimization problem. Having calculated all parameters, for a new observation u, all we need to
compute is the dot product of u and all the xi to classify u. If the following equality holds∑

i

αixi · u+ b ≥ 0, (19)

then u is classified as positive, and negative otherwise. For data that is not linearly separable, we can apply a kernel
trick but applying a non-linear transformation on xi and u such that the data points will be linearly separable in the new
transformed space.

3.6 Random Forest

Random Forest is a ensemble technique that utilizes bootstrap aggregation of many decision trees. By ensembling many
decision trees, the Random Forest algorithm remedies the overfitting tendencies of individual decision trees.

3.6.1 Decision Tree

A decision tree is a supervised learning algorithm that is structured like a flowchart. A decision tree decision tree is
comprised of three types of nodes:

• Root Node: It is the first node in the tree that contains the entire training set.
• Internal Node: It corresponds to a feature, on which a tree splits into two. It it also known as decision node.
• Leaf Node: It is a terminal node in the tree that corresponds to a class label

The decision tree is created by first selecting the most useful feature and placing it at the root node. The most useful
feature is the one that splits the data into two most homogeneously. Usefulness is determined by how pure a tree is. A
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common measure for impurity is Gini index:

Gini = 1−
K∑
i=1

p2i , (20)

where K is the number of classes, and pi is the probability of the class i. pi is calculated as the number of observations
in class i divided by total number of observations at each node. The Gini index is low or pure when observations from
one class dominates.

A stump is the simplest form of a decision tree, where the root node is the sole internal node. Just having one internal
node is not often sufficient for the model to work well in terms of prediction errors. To have more than one internal
node, the above process is repeated at each of the node from the previous nodes. That is, at each node, the most useful
feature is chosen again such that the chosen feature results in the least impure subset of data. The decision to stop
splitting can be based on a number of factors or hyperparameters that are chosen beforehand:

• Maximum depth of tree
• Minimum samples to split internal node
• Minimum samples in leaf node
• Minimum impurity decrease
• Minimum impurity to split

Decision Tree Pruning As the depth of a decision tree increases, the more prone it is to overfitting. By increasing
the depth of tree, training error is reduced, however this may come at the cost of catching too much the noise in the
training data which could cause the model to not perform well when subjected to new data. In other words, the decision
tree learns the training data too well, perhaps yielding leaf nodes with a single observation, as such the tree would not
be able to classify data well that varies from the training set. That is, inherently decision trees are low bias but high
variance.

3.6.2 The Random Forest Algorithm

The process of creating a Random Forest involves creating M new training sets by sampling n observations from
the training set uniformly and with replacement, and then fitting M models. Naturally, this will involve duplicate
observations in some of the training sets. Bagging reduces variance by averaging many noisy but relatively unbiased
models. In addition, averaging out the results of many models yields a more stable or smooth results that is less prone
to overfitting. The final prediction is made via averaging the result of each model in the case of regression, or through a
voting process in the case of classification.Random forest is an algorithm which builds a collection of decision trees
and trains them using the bagging method. Random forests help correct for decision trees’ tendency of overfitting by
averaging the result of a large number of trees. In the case of classification, the random forest algorithm uses a voting
procedure to predict class label of an observation, that is taking the mode class label of the individual decision trees. A
key component of random forests is that it adds a degree of randomness. Unlike decision trees, rather than selecting the
most useful feature to split on, the most useful feature is selected from a random subset of the total features. Since each
tree in the random forest is identically distributed, for M trees each with variance σ2 the average variance is:

ρσ2 +
1− ρ
m

σ2 (21)

where:

• ρ is the positive pairwise correlation
• σ2 is the variance
• M is the number of trees

If M is sufficiently big, the second term disappears, and by randomly selecting subsets of features we can reduce the
correlation between trees, hence reducing overall variance.
The random forest share a lot of the same hyperparameters of decision tree, that is for each tree in the random forest, it
can be tuned via the hyperparameters outlined in section 5.

Other hyperparameters that can be altered to tune the random forest algorithm are:
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• number of trees

• maximum features

As the names imply, the number of trees is the number of decision trees that populate the random forest, and the
maximum features is the maximum number of features that the random forest will consider splitting on. Although it is
true that Random Forest often produces good results, since each decision tree is trying to maximize purity on each split,
it is possible for it to miss the very small classes. That is that a split can be quite pure even if it misclassifies a class that
contains very few observations. This is particularly relevant in our data set, test_outcome is highly unbalanced, and
organism_name contains many very small classes.

3.7 Adaboost

Boosting is a similar concept to bagging, it combined a series of weak learners in order to produce a single strong
learner. AdaBoost algorithm sequentially produces decision stumps, and combines the prediction of each stump for its
final classification. AdaBoost differs from random forests in the sense that each tree is not given equal vote in the final
classification, and the order in which the stumps are produced matters. At each time step in which a tree is produced, the
observations that were misclassified in the previous model are given more emphasis, or in words weighted more heavily.
Treating the weights as a distribution, a new training set of the same size is selected with replacement. In other words,
the higher weight makes the incorrectly classified samples more likely to selected to train the next decision stump. The
greater weight means that if misclassified, the tree would be more heavily penalized, as the error is a function of the
weights. The penalization, or error of the tree determines the final voting power the tree has in the final classification.
This process is repeated until M decision stumps are created, in which case for each observation, the sum of the tree’s
amount of say is calculated for each class label, and the class label with the higher score is the predicted class. We
define:

• wti the weight given to observation i for tree t

• A =

{
+1 yi 6= ft(xi)

−1 yi = ft(xi)
where yi is the true classification and ft(xi) is the predicted classification

• I(∗) =

{
1 ∗ is true

0 ∗ is false

The algorithm is as follows:

1. Find best feature based on some impurity measure such as Gini index and create decision stump using the
selected training set (selected based on weights of each observation, at t=1 the entire training set is used as
wi = 1

N ∀ i
2. Compute the εt =

∑
wrong w

t
i the model error of decision stump t

3. Compute αt = 1
2 log(1− εt/εt), the amount of say of decision stump t

4. Compute new weight of each observation wt+1
i = wti exp(Aαt)/z ∀ i where z =

∑N
i=1 w

t
i (a normalization

factor)

5. Repeat until M stumps are created

After the M trees are created, the class label for each observation is determined based on the votes given to each class,
where the class with greater votes is the predicted class. For each observation i, votes are determined by:

V otesclass =

m∑
t=1

αtI(Class = ft(xi)) (22)

3.8 Deep Learning Method

There are two main downsides with the machine learning methods above. First, using the Bag-Of-Words approach to
vectorize the result descriptions will create highly sparse feature matrices, and since only the count of each word is used
the meaning of each word is lost. We propose a solution to this problem by using Word Embeddings rather than bag
of words to numerically represent each word. The second downside is that the sequence of the result descriptions are
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not taken into account, that is the order of the text is lost. An immediate example of when the sequence of the text
is important are negations, e.g. not found, not positive, etc. Another example is for result descriptions that contain
corrections. Since the result descriptions are append only, if there were incorrect observations they would not be
removed and would only be corrected later on in the description. So, there could be situations in which the text that
appear later in the description hold more value. Using a Recurrent Neural Network to perform classification, will allow
each word of the result description to be fed in sequentially. By using this approach, we hope to be able to improve
classification performance. In additional, also have the ability to obtain every organism name and their corresponding
test outcomes within a result description, if a result description contains more than one organism.

3.8.1 Word Embeddings

Like Bag-of-Words, Word Embeddings are a vectorized representation of words. That is, Word Embeddings is a method
to transform each word in a sentence into a vector (numerical) representation. Word Embeddings are trained such that
words used in similar contexts will have similar vector representations, and words not often found together will have
dissimilar representations. That is, for some measure of distance, words that are similar will be relatively close, and
words that are dissimilar will be far apart. An immediate advantage this presents is that the meaning and context of the
words will be accounted for.

Figure 6: Example of 3-dimensional Word Embeddings

For our project, we will be using pre-trained word embeddings. Popular pre-trained word embedding models include
Word2Vec, GloVe and fastText. The embeddings that we will be using come from BioWordVec (Zhang et al., 2019),
200 dimensional word embeddings obtained using the fastText algorithm trained on a corpus composed of literature
from PubMed and MeSH. Pre-trained embeddings are a set of weights (vectors) that can be mapped to each word in our
result description in the first layer of our Neural Network. For words that are in our result descriptions but not in the
pre-trained embeddings, we will either map the word to a random vector or a vector to denote unknown words. As a
note, after these weights are mapped to each word, we can further train the model to tweak the weights such that the
vector representation for each word is learned based on our data, using the pre-trained embeddings as a starting point.

3.8.2 Recurrent Neural Network

In order to take into account of the sequence of text, we will be using a Recurrent Neural Network (RNN) as our
classifier. The architecture of a vanilla RNN is as follows:
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Figure 7: RNN architecture (Gupta, 2017)

For each word xt in the result description, it is inputted and stored as a hidden state ht

ht = fw(Whhht−1,Wxhxt) (23)

where

• fw is some activation function (e.g. tanh )

• Whh and Wxh are the parameters of the model, they are the same for each word

The hidden state computed from each word takes into account the inputted word and the previous hidden state. This is
how an RNN is able to take into account the the sequence of text. Figure (7) above is an example of many-to-many RNN
where every input has an output. In our case, for the purpose of finding test_outcome we will be using a many-to-one
RNN, where only a single output is returned after all the words are inputted.

yi = WxhhT (24)

A common issue with RNNs is the inability to capture long term dependencies, that is earlier inputs are often forgotten
(Hochreiter, 1998). This occurs due to the nature of how the parameters are learned and is known as the "vanishing
gradient problem". Two common RNN architectures that combat this issue is LSTM and GRU, the latter of which we
will implement in our classifiers. GRU adds two additional gates: the update gate zt and the reset gate rt. These gates
contain their own set of parameters that need to be learned, the update gate tweaks how much of the previous hidden
state to include and the reset gate is used to drop previous information.

rt = fr(Wrxt, Urht−1) (25)
zt = fz(Wrxt, Urht−1) (26)

ht = zt ∗ ht−1 + (1− zt) ∗ fw(Whh(rt ∗ ht−1),Wxhxt) (27)

At a high level, GRU adds additional parameters that allow previous information to be dropped and decide how much of
the previous output to include in the next hidden state. The ability to handle sequential data will enable us to reach the
eventual goal of being able to find multiple organisms and their corresponding test outcomes. If we do not take into
account the sequence of the text, we would have no way of associating which test outcome corresponds with which
organism name.

3.9 Active Learning

While we defined labeling multiple organisms and its corresponding outcomes in a lab test result as the new objective
that is more aligned with BCCDC’s goals and identified a recurrent neural network as an appropriate method to achieve
it (Section 3.8), we run into a serious issue: lack of training data (we only have 20 or so). Building a training data set
out of a large amount of unlabeled data for a machine learning model is not a simple problem, especially when working
at scale. In particular, one needs to think about how to query new data points to label and how much training data is
needed for a machine learning model to provide a desired level of performance.

Active learning is a framework, in which a machine learning model selects which new data points to be added to its
training data set Settles (2009). It is an iterative process as shown in Figure 8. For a given pool of unlabeled data
U and an initial set of labeled/training data L, a machine learning model is trained on L and then used to provide a
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level of uncertainty for each data point in U by some uncertainty scoring function. Then by some query mechanism, a
pre-specified number of data points is drawn from L to be labeled by a human annotator.

Figure 8: The (pool-based) active learning cycle (Settles, 2009)

To prove the concept of active learning, we use RF as the machine learning model with test_outcome as the target on the
HCV dataset. As for the uncertainty scoring function, we use the mean predicted class probabilities. For querying new
data points, we simply take the data points in decreasing order of the uncertainty score. We compare active learning
and random learning (i.e. queried randomly), and results are provided in Section 4.3. Other practical aspects of active
learning are discussed as future work or considerations in Section 5.2.

3.10 Hyperparameter Optimization

Hyper-parameters are configuration variables of a machine learning model that must be chosen prior to fitting or training
the models. In other words, these variables are not updated or learnt; they determine the structure of a model. For
instance, the number of trees and the maximum number of features are the hyperparameters for RF (Sec. 3.6), and the
choice of a kernel (linear vs. non-linear) is a very important hyperparameter for SVM (Sec. 3.5). Hyperparamter tuning
of a machine learning model is crucial for performance.

Formally, let X be the space of all the hyperparameters X of a machine learning model and f ∈ R be an objective
function that we wish to maximize (or minimize). We assume that f does not have a simple closed form but can be
evaluated at some realized value x of X . Our objective is to find the best set of values x∗ ∈ X such that f is maximized.

3.10.1 Classical Approaches

The classical approaches to hyperparameter optimization are grid search and random search. In grid search, each
hyperparmeter is assigned a set of possible values to create a search space (a subset of X ), where the researcher believes
the optimal set of hyperparameter values x∗ lies. Then every combination is evaluated, and the combination that gives
the maximum output is chosen. While this approach can give you a guarantee, it might be too costly when the search
space is big. Random search alleviates this issue by randomly sampling in the search space until some criterion, which
is set by the researcher, is met. However, this approach may not give you a guarantee that the set of hyper-parameter
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values chosen by random search is the optimal one within the search space. In practice, the latter approach and its
variants are shown to work effectively. One shortcoming is that both of these approaches do not scale well as the
number of hyperparameters increases; the cost grows exponentially.

3.10.2 Bayesian Optimization

Bayesian optimization is a powerful tool for solving the hyperparameter optimization problem when it is costly to
evaluate f and/or the search space is too big. It is a class of sequential model-based approaches that builds on past
evaluations to choose the next optimal set of hyperparameter values that would maximize f . This is the main difference
from the classical approaches, which do not consider the history of evaluations. To discuss how Bayesian optimization,
we introduce three more terms:

• D: a set of historical evaluations (xi, yi)
n
i=1, where yi = f(xi) and xi ∈ X .

• M : a probabilistic model that constructs the predictive (posterior) distribution of y, p(y|D,M). This predictive
distribution captures uncertainty associated with finding a new sample for evaluation in the surrogate step.

• S: a cheap surrogate for f . It is used to find the next optimal sample to evaluate based on D by balancing
between exploring new areas in X and exploiting the explored areas D. A commonly used S is the expected
improvement function, EI (Jones et al., 1998):

EI(x) =

∫ ∞
fbest

(y − fbest)p(y|x,D)dy, (28)

where fbest is the most optimal objective function value found so far. For a new x ∈ X , EI(x) is the expected
improvement over fbest.

A general algorithm for Bayesian optimization for tuning hyperparameters is provided in Fig 9.

Figure 9: Algorithm for Bayesian optimization (Ian Dewancker and Clark, 2015). T is the maximum number of
iterations for finding x∗; it represents the maximum time or resources allowed.

Currently, there are four well-known Bayesian optimization software: SPEARMINT, MOE, HYPEROPT, and SMAC.
These software differ in how they model the predictive/posterior distribution. Note that in all of these software, they use
the same S: EI . For a complete review of the four software and details, please see Ian Dewancker and Clark (2015).
For the project, we use HYPEROPT for its good compatibility with Python (Komer et al., 2014). We implemented
hyperparameter optimization via HYPEROPT in the existing pipeline for machine learning classifiers. Furthermore, to
accommodate hyperparameter optimization, a significant effort was made on re-coding the feature engineering step.

4 Results

In this section, we will go over the results of our classifiers. More specifically, we will go over how including additional
features has improved the baseline machine learning classifiers. For all the machine learning methods, we use 5-fold
cross validation to decide which classifier to used for the final classification. The results below are based on a 80-20
train-test split, that is 80 % of the data is used for training the classifier and 20 % is used for testing. The deep learning
results are based on the HCV data set and only uses 3000 data points for training.

16



JANUARY 5, 2020

4.1 Machine Learning Results

For test_performed, applying the machine learning algorithm, using just the bag-of-words obtained from the result
description we obtain Accuracy and F2-score in excess of 0.990. When we include additional features, the classifier
performance improves to an accuracy and F-2 score of 0.999.

Test PerformedBag of Words
Bag of Words + Number of Observations

+ Test Code + Metamap +
Candidates

Accuracy 0.996 0.999

F2-score 0.990 0.999

Figure 10: Test Performed Classification Results

Similarly for test_outcome, the baseline bag-of-words approach already provides good results in terms of accuracy and
inversely weighed F1-score and accuracy. By including additional features, we again able to improve the performance
across all metrics over the baseline approach.

Test Outcome Bag of Words
Bag of Words + Number of Observations

+ Test Code + Metamap +
Candidates

Accuracy 0.992 0.994

Inversely-weighted accuracy 0.960 0.974

Inversely-weighted F1-score 0.944 0.961

Figure 11: Test Outcome Classification Results

For organism_name, it is clear that using inversely weighted metric is much more appropriate for the evaluating
performance. Although the baseline bag-of-words approach has high test accuracy, we can see that that many of smaller
classes are missed as denoted by the inversely weighted metrics. When we included the additional features we were
able to improve the inversely weighted accuracy from 0.636 to 0.866 and the inversely weighed F1-score from 0.664 to
0.848.

Organism Name Bag of Words
Bag of Words + Number of Observations

+ Test Code + Metamap +
Candidates

Accuracy 0.947 0.956

F-2 Score 0.790 0.874

Inversely-weighted accuracy 0.636 0.866

Inversely-weighted F1-score 0.664 0.848

Figure 12: Organism Name Classification Results

4.2 Deep Learning Results

We prototyped the Recurrent Neural Network on test_outcome of the HCV data set. The HCV data set guarantees a
single test_outcome for each observation, which allowed us to replace the organism name within each result description
with a "TARGET" token using a rule based approach. Neural Networks tend to perform better when given a large data
set, and even though we only used about 3000 training points the Neural Network was able to outperform the Random
Forest across all metrics.
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Test Outcome Deep Learning (RNN)Machine Learning (Random Forest)

Accuracy 0.994 0.993

F1-Score 0.929 0.924

Inversely-weighted accuracy 0.890 0.789

Inversely-weighted F1-score 0.890 0.858

Figure 13: Test Outcome (HCV) Classification Results

4.3 Active Learning Results

We prototyped an active learning framework using the HCV data set. Starting with 100 training data points and
iteratively adding 100 additional training points, we can compare the results of the query mechanism versus random
sampling. By using a query mechanism, we were able to achieve the same results ( > 0.95 accuracy and F Score) using
just over 2000 training points, whereas the random sampling required over 35000 training points.

Figure 14: Performance of Active Learning vs Random Learning

If we dive deeper into why exactly the active learning approach is outperforming random learning, we can see that it is
precisely due to the query mechanism. Due to smaller classes being more difficult to predict, the underlying classifier
is more uncertain when predicting their labels. So, the active learning model queries the smaller classes for manual
labeling. Very early on, the active learning approach begins to stop querying the large classes (positive, *missing) and
seeks out the smaller ones (negative, indeterminate). Whereas with random sampling, as expected it queries the data
uniformly. Thus, the active learning approach is able to quickly increase its performance on the smaller classes, and in
turn increase its overall performance much more quickly as compared to random learning.

Figure 15: Querying of Active Learning vs Random Learning

18



JANUARY 5, 2020

Figure 16: Class Performance of Active Learning vs Random Learning

5 Conclusion

5.1 Conclusion

Our major contribution to this project consists of three parts. The first part is modification on the existing machine
learning pipeline. Building upon the work of previous DSSG fellows, we introduced more data preprocessing steps in
order to remove components of the text that can potentially results in misclassification. Firstly, we remove stop words
to reduce the sparsity of the word vectors. Secondly, we remove all sentences containing the key phrase "previously
reported as" to remove the part of the description field that contradicts to the correct result. Moreover, based on
suggestions from the BCCDC’s domain experts, we included more features in training classifiers, such as number
observations and lab technician ID (explained in section 2.1). Furthermore, since it is necessary to tackle the severe class
imbalance in this study so that the trained classifier does not only focus on correctly classifying the large classes, we
use inversely-weighted accuracy or F1-score as a performance metric in both cross validation and comparing classifiers.

After the changes above were integrated into the pipeline, the performance of the best trained classifier has improved
for all of the test_performed, test_outcome and organism_names classification tasks. Up to this stage of development,
the classic machine learning approach seems to have achieved an ideal performance for classifying the test_performed
target.

Besides changes in preprocessing, feature selection and metrics, we also experimented hyperparameters optimization
with the existing pipeline, which is expected to optimize classifiers to more extent than those with fixed hyperparameters.
However, our trials have shown that hyperparameters optimization turns out to take significantly longer time and does
not improve the classification accuracy by much. Therefore, we did not implement it into the pipeline.

Although we did not build a complete pipeline for the deep learning approach, exploratory work has shown (in section
4.2) that deep learning has indeed improved the performance of the best trained classifier compared to regular machine
learning. Since word embedding takes in account the ordering of words within a sentence while bag of words does not,
it seems to be more suitable for identifying multiple organism(s) and corresponding test outcome(s) than bag of words.
Future work recommendation of this branch of the project is described in section 5.2.

Later in the project as mentioned in section 3.9, we implemented a prototype of the active learning framework to
account for the lack of labelled data for classifying organism_names. With active participation from the BCCDC’s
experts, active learning can achieve training the classifier and building the labelled dataset simultaneously. Results were
shown promising that our proposed query mechanism can reduce the error rate more rapidly than random learning.
Moreover, since the new objective requires all microorganisms along with their test outcome(s) labelled in order to
apply any learning algorithm, which has to be done manually, active learning is the only feasible approach based on our
knowledge, and will provide a larger fully labelled dataset for other learning approaches in the future.

5.2 Moving Forward

While our proposed methods showed promising results, there still remains much work to be done to turn the purposed
solution into a viable product for the BCCDC. There are largely three components.

The first component is a method for identifying organism names in a laboratory test result. An adhoc method was
implemented for this task for the HCV dataset, as we know apriori that there is only one organism of interest in the
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dataset. Fuzzy string matching and hard-coded abbreviations were sufficient to identify all the potential spellings of
Hepatitis C Virus. This adhoc method would certainly not work at scale. As an alternative, we tried Metamap and
found that it did not give a satisfactory result ( 30% accuracy on a small toy dataset). Our recommendation is a machine
learning method that builds on Metamap (i.e. outputs from Metamap are taken as input for a machine learning model)
in the active learning framework, as a training dataset is not available.

The second component is a method for determining a test outcome of each organism in a laboratory test result. As
discussed in Section 3.8, a deep learning model is well-suited to solve this task and showed promising results for the
HCV dataset. Due to the time constraint at the end, we did not have enough time to implement a pipeline for fine-tuning
a deep learning model (hyperparameter optimization) and for incorporating additional features, such as test sub-type and
technical ID. We suggest that additional features are concatenated just before the final output layer of a deep learning
model rather than putting those as texts in a laboratory test result and using them in a word embedding. To extend our
methodology to a case of multiple organisms, we use an iterative approach. For an organism in a lab test result, we
replace its name with a target token, say _TARGET_, and replace the other organism names with another token, say
_OTHER_. Then we feed that modified text to the deep learning pipeline. We repeat the same process for each of the
organisms in the lab text result.

The third component is active learning. The first two components rely on active learning to efficiently create a
labeled/training dataset for the two methods. While we showed the power of active learning on the HCV dataset, our
implementation is not ready for practical use. In particular, there are several aspects of active learning that should be
considered: multi-task active learning (since we now have two models to train), stopping criteria (when to stop labeling),
and unreliable oracles (inevitable errors from human annotators). These issues are discussed in-depth in Chapter 7 of
Settles (2012). In addition, to implement the active learning framework, an interactive interface is required for human
annotators to query and label data points easily without having to write programming codes.

Accomplishing each of the components is not trivial. It would require an experienced machine learning scientist (NLP)
and software engineer. There do exist two commercial products that may perform all of the above tasks: Amazon
Sagemaker (https://aws.amazon.com/sagemaker/) and Prodigy (https://prodi.gy/). In a conference, we met a data
scientist at WorkSafeBC and was informed that they use Prodigy for classifying customer complaints.

5.3 Social Good

We conclude the report with a remark on impact of our work on social good. Our work moves the BCCDC closer
to replacing the manual labeling process with an automated system. Furthermore, We proposed the new, ambitious
objective of identifying all the organism names in a lab test result and determining their test outcomes and described
a potential solution to achieve it. The automated system would bring direct impact on population health. It would
require less time and capital resources to label lab test results and likely reduce human-made errors. Consequently, it
would decrease the economic burden on BCCDC, and most importantly, more accurate statistics and analyzes based on
the labeled lab test results would be available to stakeholders in a shorter time. It would imply that health authorities
could make more accurate and quicker decisions on urgent matters, such as disease outbreaks. In addition, with all the
organism names and their test outcomes labeled, health authorities would have more granular data to look into matters
relevant to population health.
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