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1 Introduction

This report was the result of the collaboration between the University of British Columbia’s

(UBC) Data Science for Social Good (DSSG) 2018 program and the BC Centre for Disease Control

(BCCDC). In this section, we introduce the two parties involved and summarize the project context

and goals. In Section 2, we provide a brief overview of related work in literature. We share the

main results of our analysis in Sections 4 and 5 before concluding this report with some discussion

and comments in Section 6.

1.1 Data Science for Social Good

The DSSG program is a 14-week fellowship that is offered by the UBC Data Science Institute

(DSI) and sponsored by Microsoft. The program is designed to provide UBC undergraduate and

graduate students of diverse backgrounds the experience of working on a data science project that

pertains to the concept of “social good”. While the concept in itself may be broad and abstract,

these projects are generally brought forth by nonprofit organizations or organizations in the public

sector and make use of data to benefit society and improve people’s well-being in some aspect.

Through the program, the students have the opportunity to learn and apply data science, and the

organizations have the opportunity to make progress on these projects with minimal resources.

1.2 Background

Operated by one of BC’s health authorities, the BCCDC provides several health-care services

including:

• managing various health clinics and laboratories throughout BC

• providing programs that contribute to public health

• analyzing and monitoring disease trends at the population level

Through their services, the BCCDC has collected over twenty years of patient and laboratory test

result data. As part of their work in analyzing disease trends, it is now in their interest to review

the historical laboratory tests and extract various pieces of information such as the purpose of the

test, the microorganism that is being tested for, and the outcome of the test. However, this process

of labeling each test result is currently being performed manually, and is expensive to carry out for

the following reasons:

1. The test result description text can be difficult to interpret

The laboratory test results are stored as semi-structured text in their data warehouse. The

semi-structure form is the consequence of the laboratory technician having the option of either
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Figure 1: Examples of laboratory test results.

inputting a code that auto-generates the text, inputting completely free-form text, or inputting a

combination of the two where free-form text is appended to auto-generated text. As a result, there

is no consistent structure in the test results that can allow for simple rule-based processing.

In addition, the actual content of the text further complicates the issue more. Unlike standard

natural language documents, the test results are often recorded in point-form and are mostly

composed of laboratory-specific terminology including microorganism names, laboratory procedure

names, and abbreviations. It is also not uncommon that the entirety of the text is a single number,

or that the free-form text contains typographical errors. The free-form text may also include

information such as names and phone numbers that may require special attention during processing.

Figure 1 shows examples of what a test result description may contain.

2. There is a high-volume of test results that still need to be interpreted and labeled

BCCDC’s data warehouse contains over 330 million test results. As of the time of this report,

they have labeled only a subset of the data that is relevant to some of their data marts. Manually

going through the large number of remaining unlabeled test results along with the new test results

that are added each day would require additional resources that are simply not available.

1.3 Project Goals and Scope

The process of manually labeling the test results in BCCDC’s data warehouse is expensive to

carry out. Thus, the goal of this project is to achieve the following objectives:

G1. To identify the appropriate machine learning or natural language processing (NLP) solutions

for automating the labeling process

G2. To provide an example code solution implementing G1 that can be integrated into the extract,

transform, and load process of the data warehouse

G3. To recommend changes in how the data is stored to improve the efficiency of the labeling

process
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This report focuses on the work that we associate with G1. Specifically, we evaluate algorithms for

labeling the outputs of interest shown in Table 1. Our code solution for G2 is detailed in a separate

technical documentation produced along with this report. Section 6.3 provides a summary of our

recommendations for G3.

Output Description Classes

test_performed whether the test was performed
Yes

No

test_outcome whether the microorganism being tested for was found

Positive

Negative

Indeterminate

Missing

level_1 the genus name of the microorganism being tested 30 classes and counting

level_2 the species name of the microorganism being tested 200 classes and counting

Table 1: The outputs to label for each test result.

2 Literature Review

We provide a brief overview of similar work in literature in this section. In 2014, Kang and

Kayaalp explored the problem of extracting laboratory test information from biomedical text and

compared the performance of an original symbolic information extraction (SIE) system to var-

ious machine learning-based NLP systems [2]. Their results showed that well-tailored symbolic

approaches may outperform machine learning-based approaches. The main difference between our

problem and theirs is that the document corpus they extract from are decision summaries from

the U.S. Food and Drug Administration. These summaries are written in natural language unlike

our test result descriptions which are found mostly in point-form. We expect that this difference

will be significant enough that a symbolic approach to our problem will require more complex logic

before it can achieve similar results to theirs.

Jang et al. used hidden Markov models to text mine doctor notes in 2006 [1]. The document

corpus that they worked with were more challenging as the notes were written in a mixture of

English and Korean. Their models achieved around 60%-70% accuracy and aimed to be robust

to unknown phrases not seen in the training corpus. One notable tool that they also used is

MetaMap, which can be used to annotate input text with medical tags and semantics. MetaMap is

also commonly used in other health domains such as for text mining of cancer-related information

[3].
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3 Dataset

The dataset that we work with was provided in the form of multiple tables in a Microsoft SQL

Server 2016 database. The dataset is a subset of the data available in BCCDC’s data warehouse

and consists of approximately 950,000 test results. The test results were selected in a way such

that the majority contain no personally identifiable information. Not all test results in the dataset

are labeled. Figure 8 in Appendix 7.1 shows the proportion of labeled data for each output. We

note that the proportions vary significantly ranging from 100% in the case of test_performed to

around 11% for the microorganism name outputs.

Figure 9 in Appendix 7.2 shows the class breakdown of labeled data for each output. We ob-

serve that test_performed has severe class imbalance, with 94% of the labeled rows being Yes.

test_outcome also has severe class imbalance between 69% of the labeled rows being Missing and

1% Indeterminate. We also note that there are some level_1 classes with very few rows in the

dataset. The smallest class has only 50 rows.

We will refer to the data fields shown in Table 2 frequently throughout our analysis in Section 4.

Data Field Description

result_full_description (RFD) the full test result text. A RFD may consist of multiple

observations

test_type describes the type of test, e.g. Culture for culture tests

test_code the code for the name of the test, e.g. CULT for some

culture tests

obs_seq_nbr the sequence number in which the observation appears in

the RFD

Table 2: The relevant data fields we use in our analysis.

4 Results and Analysis

We highlight our key analysis and results in this section. Our analysis was primarily carried

out using Python 3.6 with the MetaMap components done in Java 10.

4.1 Preliminary Analysis

Before we explore possible solutions to our main problem, we first run simple queries to get a

better sense of what the data consists of. In particular, we attempt to identify common patterns
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Figure 2: A word cloud of the most frequently occurring words in the RFD’s (stop-words removed).

in the RFD fields of the test results. A word cloud of the most frequently occurring words in the

RFD’s is shown in Figure 2. Stop-words (common English words that do not provide much insight

such as “the” or “and”) were removed prior to the generation of the word cloud. We observe that

the remaining most frequent words are generally biological, medical, or laboratory terminology such

as “specimen”, “assay”, and “reactive”. We also note the presence of abbreviations such as “hiv”

and “hbv”, and lab techniques such as “pcr”.

4.2 Baseline Machine Learning Classifiers

We determined that a machine learning approach would not be appropriate for level_2 due to

the number of classes and some classes having only one example in our dataset. We revisit level_2

in Section 4.5.

We start by experimenting with standard machine learning classifiers using only the RFD field

for the test_performed, test_outcome and level_1 outputs. We describe our data preprocessing

procedure in Section 4.2.1 and summarize the results in Section 4.2.2.

4.2.1 Data Preprocessing

Due to the presence of free-form text in the RFD’s, there are many issues with the content

that would be problematic if we were to train machine learning classifiers using the RFD’s as-is.
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For example, many RFD’s consist of a single number or contain meaningless symbols. We start by

cleaning and transforming the data into a usable form.

We start by removing all the empty RFD’s and RFD’s consisting of only a single number from

our dataset. For the remaining RFD’s, we remove all irrelevant symbol characters (e.g. ‘_’) from

the text. We then replace all standalone numbers (e.g. “16”) by a special token to prevent our

classifiers from overfitting to specific number values. Lower-casing the existing test result labels is

also necessary as there are inconsistencies such as ‘Yes’ and ‘yes’. Another potential issue in the

data is the presence of specific dates in different formats. We choose to ignore the dates due to the

lack of time and usable tools that could identify all the differing forms of a date. In future work, it

may be reasonable to replace all dates by a special date token similar to what we did with numbers.

After cleaning the data, we transform the RFD’s into numeric vectors using the bag-of-words

representation and drop the low frequency tokens (less than 10 occurrences in our analysis). We

experimented with other representations such as TF-IDF and positioning-based forms, but found

no significant differences in the results between using those and bag-of-words. For test_performed,

we find that using unigrams to trigrams resulted in the best performance while there is little to no

difference compared to just using unigrams for the other outputs.

4.2.2 Classifier Results

The standard machine learning classifiers we experiment with include näıve Bayes (NB), L2-

regularized logistic regression (LR), 100-tree random forest (RF), and linear-kernel support vec-

tor machine (SVM). To evaluate the classifiers, we perform 5-fold cross validation and average

the test accuracy across the five folds. The classifiers achieve high test accuracies in the case of

test_performed as seen in Figure 3. The trigram “test not performed” is seen to be the strongest

predictor across all our models. Close inspection of the resulting confusion matrices however show

symptoms of bias towards the majority class. We address this issue in Section 4.3.
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Figure 3: Baseline classifier performances for test_performed.

In the case of test_outcome, the standard machine learning classifiers achieve similar results.

The previously mentioned class imbalance issue does not appear to significantly impact results for

test outcome. Figure 4 shows the classifiers achieve around 95% test accuracy for NB and around

99% for the others.

Figure 4: Baseline classifier performances for test_outcome.

The test_outcome classifiers retain their high accuracy scores even when feature selection is
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done to reduce the size of the feature space. We opted for scikit’s chi-square feature selection

algorithm for ease of use and convenience. From Figure 5, we see that only around 150 features are

required for the performance of the LR, RF, and SVM classifiers to asymptote. We see a similar

trend in the case of test_performed.

Figure 5: Test accuracy versus number of features retained for test_outcome.

From Figure 6, we observe that the test_outcome classifiers also retain their accuracy when

the training and test set sizes are reduced. This indicates that our text data may contain more

structure than we initially expected. Intuitively, this structure may be due to certain snippets of

the text that were auto-generated from standardized lab codes.
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Figure 6: Test accuracy versus size of training set for test_outcome.

Error analysis shows that many of the misclassified test results contain contradictory RFD’s,

where observations at the start are discordant with observations at the end. For example, the RFD

Bordetella pertussis DNA detected by PCR. | CORRECTED ON 14/Oct AT 1554:

PREVIOUSLY REPORTED AS No Bordetella pertussis DNA detected by PCR. | Cul-

ture results to follow.

is interpreted as “Bordetella pertussis DNA was actually detected despite being previously reported

as not detected”. Our classifiers struggle more with cases like this one where they predict Negative

for test_outcome when the true label is Positive. We also note though that our classifiers do

correctly classify a significant number of these contradictory test results, and correctly classify the

majority of the non-contradictory test results.

The standard machine learning classifiers also achieve high test accuracies for level_1. The

recall and precision scores vary greatly between classes, where the classifiers appear to predict

better on the classes having more data and more structured RFD’s. The important features as

reported by RF consist mostly of organism-specific terms such as “salmonella”, “streptococcus”,

and “hiv”. This provides some support that our classifiers are learning reasonable patterns for

predicting level_1. However, we also reconsider the use of machine learning for labeling level_1.

We save this discussion until after we revisit level_1 in Sections 4.5 and 4.5.1.
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4.3 Class Imbalance

The test_performed classifiers achieved high test accuracies (i.e. well above 95%). Upon closer

investigation however, the resulting confusion matrices show signs that our classifiers are heavily

biased toward the majority class Yes. Table 3 shows the confusion matrix for one of the folds.

Specifically, note that the recall score for rows with true class No is 79%, which is noticeably lower

than the other scores.

Predicted Yes Predicted No Recall

True Yes 67,696 411 99%

True No 947 3,475 79%

Precision 99% 89%

Table 3: The test_performed confusion matrix for one of the folds.

We consider three possible solutions for the class imbalance problem observed in the baseline

result.

1. Downsampling, where rows with true class Yes are randomly removed from the training

set until the training set is balanced. The disadvantage of this approach is that due too

how imbalanced the classes are, much of the data is left unused. This can also lead to an

overfitting problem where the classifiers only learn patterns from the few remaining data that

is left to train on.

2. Upsampling, where rows with true class No are randomly duplicated in the training set until

the training set is balanced. The disadvantage of this approach is the impact on training

time. By duplicating rows until the training set is balanced, we are almost doubling the size

of the training set.

3. Class weighting, where we introduce heavy penalties (weights) when the classifier misclassifies

the minority class during training. One point to consider with this approach is the choice

of weights. Because the weights may be arbitrarily chosen, it is arguable that this approach

introduces a bias that may or may not be non-trivial.

We find that the approaches above reduce the number of false positives (rows with true class

Yes that are predicted as No), but do so at the expense of introducing many more false negatives

(rows with true class No that are predicted as Yes). Table 4 shows the confusion matrix for one of

the folds when the classes are weighted. In particular, the recall score for rows with true class No

improves, but the precision score for rows with predicted class No decreases.
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Predicted Yes Predicted No Recall

True Yes 66,355 1,800 97%

True No 429 3,945 90%

Precision 99% 69%

Table 4: The test_performed confusion matrix for one fold when class weighting is used.

We consulted a domain expert and determined that false positives are more acceptable than

false negatives. Hence we retain the original test_performed classifiers without the additional

solutions for addressing class imbalance in our pipeline code.

4.4 MetaMap

MetaMap is a tool that can identify and annotate input text based on concepts in the Unified

Medical Language System (UMLS) medical vocabulary. In particular, MetaMap can identify words

as concepts within specific Semantic Types such as Finding or Bacterium. Figure 7 shows an ex-

ample of MetaMap’s annotation. Further details regarding MetaMap’s output can be found in our

separate MetaMap Technical Documentation produced along with this report.

Figure 7: Example of concepts (yellow) and corresponding Semantic Types identified by MetaMap.

We experiment with MetaMap in an attempt to improve the generalizability of our classifiers. As

part of the preprocessing procedure, we send all the RFD’s to MetaMap and store the annotations

for each RFD. We then apply the unigram bag-of-words transformation on only the annotations,

which results in a feature set of approximately 100 unique semantic types. The classifiers trained

on this feature set achieve approximately 95% test accuracy, which is slightly worse than what our

baseline classifiers achieved. However, the classifiers also do not appear to generalize as well as

expected to simple example sentences that we create. Further analysis shows that perhaps some of

the MetaMap annotations are too general and that using only the annotations results in significant

loss of meaning. For example, the words “positive” and “negative” are both annotated as Finding.

The semantics of these words would be important particularly in the case of test_outcome, and

so the generalization from MetaMap does more harm than good in situations like this.
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4.5 Symbolic Approach to Microorganism Name

Though using the MetaMap annotations as features did not improve the performance of our

classifiers, we recognize that there may be value in MetaMap for other approaches. In particular,

we consider a non-machine learning approach for labeling the level_1 and level_2 outputs.

In what we call the symbolic approach, we again use MetaMap to annotate the RFD’s. For

each RFD, we then collect all the terms in which MetaMap identified as Bacterium or Virus into a

candidates list. Our output label would then be one of the names in the candidates. The advantage

of using MetaMap here is that not only can it recognize microorganism names as an entity, it can

also recognize abbreviations of the names (e.g. E. coli) and map them to their full preferred name

(e.g. Escherichia coli).

The crucial step in this approach is how the final label is chosen from the candidates. In

our algorithm, we use a pre-constructed dictionary based on the existing level_1 and level_2

labels. If a name in the candidates exists in the dictionary, we prioritize that name as the output.

Otherwise we arbitrarily pick a name from the candidates. While this approach is somewhat näıve,

we obtain 90% accuracy on level_1 and 50% accuracy on level_2.

4.5.1 Machine Learning Versus Symbolic

We have tried both a machine learning approach and a symbolic approach for level_1 and

level_2. We briefly discuss the advantages and disadvantages of both approaches in this section.

The machine learning approach has shown better performance on the microorganism name out-

puts overall. The approach also requires minimal manual configuration and is simple to implement.

However, the key downside is that the trained classifier cannot label previously unseen microorgan-

ism names. How the classifier is labeling the microorganism name can also be difficult to interpret

and adjust if desirable to do so.

Our symbolic approach does not do as well compared to the machine learning approach. The

algorithm also fails when a microorganism is detected but its name does not appear in the test

RFD. On the other hand, the approach does allow the labeling of new microorganism names unlike

the machine learning approach. The approach is also transparent in terms of how it is labeling the

outputs, and can easily be modified to fit more complex algorithms to improve results.

In summary, the machine learning approach performs better compared to our current symbolic

algorithm, but the symbolic approach shows more promise as it can grow and be adjusted as needed.

Specifically, the construction of the dictionary and how the algorithm chooses the label from the

13



candidates are the key steps that have much potential for improvement.

4.6 Unlabeled Data Evaluation

To further evaluate our algorithms, we predict on new data and manually review the results

with the BCCDC. The three sample datasets we use for this purpose include:

D1. An external set of 29 test results that the BCCDC had microorganism name previously labeled

as Not in Hierarchy that were re-labeled at a later date. It is expected that this set is most

similar to the test results we have in our training dataset.

D2. A random sample of 100 unlabeled test_code = CULT test results in our dataset. It is

expected that this set is somewhat similar to the labeled test results in our dataset which we

are training on.

D3. A completely random sample of 100 unlabeled test results in our dataset. It is expected that

there may be test results in this set that are very different from the ones we are training one.

Based on our evaluation, the results can be summarized as follows.

1. Our classifiers generally performed well on D1 except on test_outcome where Missing was

the dominating (incorrect) label.

2. Our classifiers did not perform well on D2 and D3. The Missing test_outcome issue is still

present, and Not Found is the dominating label for the microorganism name outputs.

One hypothesis that we make is that our classifiers were overfitting to specific groups of test

results, such as those involving Hepatitis C Virus, because those groups are over-represented in our

training dataset. Test results within these groups have very similar RFD’s and labels, and so it is

very likely that our classifiers try to correctly predict on these test results as much as possible. This

might result in poor generalization to other test results that are lesser represented in our training

set.

4.7 Split by Test Type

Our results from predicting on the new datasets showed that our classifiers seemed to be overfit-

ting to certain subsets of test results that are over-represented in our dataset. To test our hypothesis

that our dataset consists of test results from different “true” distributions, we experiment by split-

ting our dataset into subsets where each subset contains test results of a certain test_type.

In particular, we consider the subset of Antibody test results and the subset of NAT-PCR test

results. We train our classifier on the Antibody subset and use it to make predictions on the
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NAT-PCR subset. Our results show that the classifier only achieved 30% accuracy on the NAT-PCR

test set. This implies that the RFD’s of tests of different types may have very different structure

(i.e., they come from different distributions). This provides some evidence for our hypothesis, and

suggests that we may achieve better results by training classifiers specific to certain subsets rather

than training a single classifier on one dataset that may contain data from multiple distributions.

We further discuss this idea as future work in Section 6.2.

4.8 MetaMap-SNOMED Dictionary

As noted in the discussion of our symbolic approach for labeling microorganism name, one of

the key components of our algorithm is the microorganism name dictionary. One problem with

constructing the dictionary based on the existing labels is that the naming hierarchy used by the

BCCDC is inconsistent. For example, level_1 is assumed to describe the genus of the microor-

ganism, but also contains classes such as Hepatitis C Virus which falls under the lower taxonomic

ranking species Hepacivirus C. Thus rather than creating a dictionary based on the inconsistent

hierarchy, we explore the idea of using MetaMap to create a dictionary of standard microorganism

concepts that can then be mapped to the BCCDC’s current hierarchy or a future improved version.

To create an initial version of this dictionary, we have MetaMap annotate each of the RFD’s and

collect all of the Bacterium and Virus concepts. We then map each MetaMap concept to their cor-

responding Systematized Nomenclature of Medicine (SNOMED) code using the UMLS REST API.

Using the SNOMED codes, we can then retrieve the partial hierarchy of each concept. Through

this process, we obtain not only the concept identified but also its “parent” and “children” concepts

in its hierarchy. Also, because the SNOMED codes are relatively standardized, the concepts can

be mapped to equivalent concepts in other medical vocabularies.

We believe that this dictionary would be suitable for our purposes. Our construction also allows

easy extension or modification of the dictionary as necessary. While we do not use this dictionary

in our pipeline code, we hope that this idea can be further explored in future work.

4.9 Observation-level Classification

The BCCDC currently only labels one class per output for each test result. However, there

exist instances where a test result identifies a co-infection. In these cases, multiple microorganisms

are found but the given label only names one of them. While not directly in scope of this project,

we experiment with the capability of identifying multiple microorganisms and their respective test

outcomes by making a simple modification to our algorithm.

For each test result, we separate its RFD into multiple observations using the obs_seq_nbr

data field. We then apply our classification algorithms on the observations rather than the RFD’s.
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One important thing to note is that because we do not have existing labels at the observation level,

we still train our classifiers on the RFD’s and only use the observations when predicting on new

data. For this reason, it is also difficult to produce quantitative measures of how well this approach

does. Based on our qualitative evaluation, the approach seems to have potential but would require

further consideration particularly in how the labels of each observation are aggregated back into

the test result level.

5 Pipeline Architecture

As one of the main goals of the project, we provide example code implementing the approaches

we found to be appropriate in the form of a pipeline. The technical details, design decisions, and

explanations of how to use our pipeline are provided in the Pipeline Technical Documentation

produced along with this report.

6 Discussion

We discuss our work and results in this section. We describe the limitations of our work and

some points to consider in Section 6.1. We highlight the possible next steps based on where we

ended our work in Section 6.2. We provide some recommendations to BCCDC regarding how they

store their data to better facilitate efficient analysis in Section 6.3. We then end our report with a

brief reflection of the project and its relevance to “social good” in Sections 6.4 and 6.5.

6.1 Limitations

As demonstrated, machine learning and NLP solutions have shown promise in the automated

labeling of laboratory test results. However, we also caution of using our results as-is. Due to

the short timeframe of the program, our intention and focus was to understand what algorithms

could be appropriate for automating the labeling process, and not which specific algorithm should

be used in a production setting. While the machine learning classifiers we experimented with

have achieved good results with our dataset, we cannot guarantee the same with new data par-

ticularly when the new data is very different from the data rows that the classifiers were trained on.

One should also be careful when interpreting the fitted parameters of the models. While we are

performing feature selection in an attempt to retain only the important features, there may still

be instances where important features are dropped, unimportant features are retained, or strong

correlations exist between multiple features. These situations are a consequence of the large initial

feature space and may lead to unexpected parameter values during training.
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6.2 Future Work

Our results showed that the classifiers achieve high accuracy on our test sets, but do not gener-

alize well to similar examples believed to have come from a different distribution. The immediate

next steps following our work could focus on generalizing our classifiers in order to improve predic-

tions on similar data. For example, removing dates that frequently appear in the result descriptions

may require the use of specialized packages or custom regular expressions but would reduce possible

overfitting to these tokens. Further incorporating MetaMap’s generic annotations in ways that we

did not experiment with may also be another direction worth considering.

It is also worth considering an approach where different sets of classifiers are fit to different

subsets of the test results. As discussed in Section 4.7, there is evidence that tests of different test

types are different enough that a classifier trained on one type of tests may not perform well on

another. Additional training data would likely be needed to attempt this however depending on

the level of granularity at which the training dataset is split up and the size of each resulting subset.

We found the microorganism name outputs challenging to work with based on what was avail-

able. The pure machine learning approach achieved better results on level_1 but is unable to

identify new organisms beyond what is in the training set. The symbolic approach did not do as

well, but is more appropriate for the task at hand. While our symbolic approach could also be

refined with more complex logic, we suggest revisiting this output if a standardized microorganism

dictionary is constructed in the future as per our recommendations in Section 6.3.

Our pipeline architecture can also be easily modified to classify the other outputs of interest

shown in Table 5 that are not in scope of this project. Tuning the performance for these outputs

will likely require further analysis and experiments.

Output Description

Proficiency Test if the test was performed only to test laboratory equipment

Level 3

Level 4
lower taxonomic ranks of the microorganism being tested

Toxigenicity whether the microorganism is toxic

Table 5: The other outputs of interest not in scope of this project.
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6.3 Recommendations for the BCCDC

As one of the goals of the project, we’ve identified the following (idealistic) changes that would

simplify future analysis:

1. Enforcing structured results

The need for a machine learning or NLP solution is due to the presence of free-form text. By

enforcing only coded results (with dynamic inputs for numeric results of a test for example), the

coded results themselves would already be labeled with the desired information. This eliminates

the need for any classification algorithm and the issue reduces to a simple querying problem.

2. Updating outdated interfaces and infrastructure

Related to the above, the common use of free-form text is partially because the test result field

is over-abused and doubling as a space to include extra notes not necessarily related to the result

of a test. This signals the need of a separate field specifically for storing additional comments.

3. Standardizing microorganism names

The current level-hierarchy used for microorganism labels is inconsistent. The questionable use

of the incorrect Influzena label rather than the correct name influenza also points towards the

need of a formal standardized microorganism dictionary. As we explored in Section 4.8, MetaMap

can be used to create an extendible dictionary suitable for this purpose.

6.4 Impact on Social Good

We end this report with a comment on this project’s impact on “social good”. As touched

on previously, one of the primary goals of the DSSG program is to explore and expose how data

science could be applied to benefit society and people’s well-being in some aspect. In this project,

we evaluated potential classifiers for labeling laboratory test results. These labeled test results are

intended to be aggregated at an episode-level, and the episodes are to be further aggregated at a

lab-case- and case-level. By building efficient and accurate classifiers at the test-level, we lay the

groundwork for future work in automating the detection of cases of reportable diseases.

Such a system would have direct implications on population health. An accurate automated

system would reduce the time needed to identify cases manually, and would also minimize the

number of human-made errors. As a result, accurate statistics of reportable disease cases would be

readily available in a shorter period of time. Health authorities could then use these statistics to

more quickly inform and guide decisions relevant to the improvement of public health.
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6.5 Conclusion

We hope that our work in this project has provided insight to the BCCDC regarding the

possibilities that they hold with their data. We also hope that this report highlights the unique

challenges of working with health care data. We thank all those who were involved and provided

guidance with the project, and thank the UBC DSI, the BCCDC and Microsoft for making this

experience possible.
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7 Appendix

7.1 Proportion of Labeled Data

Figure 8: The proportion of labeled data for each output (approximately 950,000 rows total).
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7.2 Class Breakdown of Labeled Data

Figure 9: The class breakdown of labeled data for each output.
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7.3 Test Outcome Binary Case Analysis

Note: the analysis described in this section uses an early version of the data preprocessing step

described in Section 4.2.1. This section is included only to provide further insight into the data but

the results may no longer be applicable.

Before we start our test_outcome analysis with all four classes, we run preliminary experiments

on the two-class case with classes Positive and Negative. The baseline classifier results are very

similar to the four-class case as can been in Figure 10.

Figure 10: Baseline classifier performances for binary test_outcome.

Figure 11 shows the “important” features as per LR weights. Note that this interpretation of

feature importance should be taken cautiously as there may be strong correlations between fea-

tures that may affect the LR weights in unexpected ways. We observe that although the most

important features (“no”, “non”, “nonreactive”, “positive”) are intuitively relevant for predicting

test_outcome, other features include some purely-numerical features (“16”, “30”, “2006”, “50”)

and some organism-specific features (“hbv” related to Hepatitis B) which may be surprising. This

implies that our classifiers are fitting to non-generalizable words. Future work may focus on using

domain knowledge to produce a list of non-generalizable tokens to remove from the feature space.
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Figure 11: Most important features for Positive (blue) and Negative (red) test_outcome according

to LR.
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